
Using NoSQL Database to Persist Complex Data
Objects

Maxmiliano Franco BRAGA, Fábio Nogueira de LUCENA
Instituto de Informática

Universidade Federal de Goiás (UFG)
Goiânia – GO – Brasil

{maxmilianobraga, fabio}@inf.ufg.br

Abstract—NoSQL Databases are database management
systems which use few or no SQL commands to query,
store and delete data. They are used for situations on
which traditional relational data base managements were
not designed for, such as horizontal scaling and storing
large amount of complex objects, which are difficult to
store on tables.

The use of this kind of database by some organizations,
such as Google and Amazon, which rely on the storage
of great amount of data, is a strong evidence that NoSQL
has some advantages to be used for large amount of data.

This paper presents the NoSQL database approach
and why this kind of database may be a good option
applications which deal to large transactions to persist
complex data objects.

Index Terms—Software Engineering, NoSQL, Database
Management Systems, persistence,

I. INTRODUCTION

Organizations collect a large amount of data for future
analysis. These data are traditionally stored on databases.
Database is a system used to store and retrieve organized
data.

A. Relational Database

Relational Database Management Systems, or just
Relational Databases, have been the most used storage
model for the last decades.

Typical Relational Databases Management Systems
work very well on small but frequent read ant write
transactions. They were designed for this kind of trans-
actions and handle them very well. For most of the
cases, RDBMS are sufficient for applictaions needs. But
they present poor performance on applications which
store large amount of complex data. Such problems are
evidenced on some situations as indexing large number
of documents and information, retrieving self-associated
complex objects, and streaming stored media files. The

relational approach does not suits very well on these
situations. [1]

B. NoSQL Database

Although the Relational Model has served well for a
long period, there is a growing number of organizations
using non relational databases, also known as NoSQL
databases. NoSQL is the abbreviation of ”Not only
SQL”. [2]

The term NoSQL was first used in 1998 to name
an open-source relational database system that did not
have a SQL interface explicitly. It was an experimental
database system and have not been widely used. The
term have no longer been used until 2009, when it
emerged on an event about non-relational approaches
databases. NoSQL was then used to describe a group
of databases which had a different approach of SQL
Databases Systems. [3]

Although the term NoSQL and some recently dis-
cussions suggest that these databases are alternatives
to take place of the common Relational Databases in
all situations, they are indeed options for some specific
situations for which the relational databases were not
designed for. Stonebraker disagree about the adoption of
the term NoSQL. He explains that ”not only relational”
suits better. Relational databases and NoSQL databases
are not competing for the same space. They should
coexist, each approach for its suitable situation. In fact,
these two approaches have different ranges of problems
which they were designed to solve. [4]

Some of the NoSQL databases are: mongoDB,
chouchDB, Neo4J, BigTable, Cassandra and SimpleDB.

C. Scalability

Scalability is the capacity of a system to share work
load on different resources. If this share is linear and
equivalent proportional to each node capacity, the scaling



process is efficient. [5] Vertical scaling, or scaling up,
means to add more resources to the same server or
node, such as memmory or processor power. Horizontal
scaling, or scaling out, means to add more servers to the
processing structure.

II. NOSQL CONCEPTS

NoSQL databases were designed to solve some com-
mon problems for distributed databases. Scaling and
MapReduce are some techlogies most NoSQL Databases
use to solve these problems. [6]

A. Scaling

There two technologies NoSQL databases use to scale
data: Replication and Sharding.

Replication is, as its names suggest, storing replicate
data on different nodes. The trick to acquire high per-
formance is to balance the acces to this replicate data,
so the processor parallalizes the work load processing.

Orend explains that replication also makes the
database failure tolerant, as if one node fails, there is
at least another node which has the same data. Although
this advantages, it costs more resources on writing op-
erations.

Sharding is the ability of splitting data to different
nodes. Each node is called shard. Some NoSQL can be
set up to shard data according to some rules applied to
the data primary key.

The result of this is a segregated collection of objects
spread on different nodes. The database system must
have a service to route the operations through each node,
so data can be stored, retrieved and deleted on the right
shard.

B. MapReduce

MapReduce is a model created to process large
amount of data in a systematic way. It is based on two
functions: map and reduce. The main objective is to
make possible for the system to use this functions to
parallelize computation across large-scale. [7]

Dean explains how Google uses MapReduce to iterate
and seek for patterns through large amount of raw data
and crawled documents.

The use of MapReduce framework makes it simple
for applications to automatically be distributed through
different servers. Most NoSQL databases, such as mon-
goDB, use MapReduce to distribute.

III. NOSQL MODELS

NoSQL databases share some common characteristics,
such as the lack of a rigid schemma, no necessity for
joins to combine relations, and and easy way to scale
horizontally. But they serve for different needs and use
different approaches to store data. Three of these ap-
proaches are Document Oriented Databases, Key/Value
Store and Graph Database.

A. Document Oriented Databases

Document Oriented approach structures data similar
to document, as its name indicates. The usually does not
use tables. The attributes of the items are dinamically
inserted. Such as documments share some common
properties, but may have different ones, the items stored
on Documento Oriented databases may differ. As no
table is declared, there is no rigid struture to store data on
it. The application is responsible to treat these dynamic
properties.

The mongoDB, which is object of this study, and
coachDB use the Document Oriented approach.

B. Key/Value Store

The Key/Value Store is the simplest NoSQL database
approach. The data is stored on a hash which has a
unique identifier, the Key, and the respective data, the
Value. The data is structured similar as an dictionary.
Insert, delete and update operations are applied on each
given key.

Comparing to a relational model, the Key/Value ap-
proach is similar to a table of two columns. The dif-
ference is that the value column may store multivalue
items.

SimpleDB is provided by Amazon and uses this ap-
proach. It is a schema free database. It provides a simple
SQL Interface for end-user to query over data. Project
Voldermort is anotaher database management systems
which adopt the Key/Value approach.

C. Graph Database

Graph is a mathematical abstraction common used on
Computer Science. The interest on graphs has grown
recently. One of the applications is to represent social
networks. [8]

Graph Database are the the most complexes NoSQL
databases approach. The data is represented as complex
objects which associates to other data similar to graphs
structures.

Neo4J is an open source Graph Database implemented
in Java.



IV. MONGODB

mongoDB is a NoSQL database management system.
We have chosen mongoDB because it is a free open
source system and it implements most of the NoSQL
technical features presented on this paper.

David Mytton tested most of the NoSQL database
systems for a project and explains why they have chosen
mongoDB on his article ”Choosing a non-relational
database; why we migrated from MySQL to MongoDB”.

Some of the reasons made Mytton [9] take his choice
for mongoDB include its easy way to install, easy
replication capability, automated sharding and good doc-
umentation.

Mytton explains that performance was not one of
the reasons they have chosen mongoDB. Although they
discovered mongoDB to be a lot faster than MySQL on
huge operations.

A. mongoDB Replication

mongoDB uses replication to outcome failover situ-
ations and to acquire data redundancy. Replication on
mongoDB are available on two forms: Master/Slave
Replication and ReplicaSet.

The mongoDB Documentation [10] recommends
Replica Set as the prefered repclication method.

Fig. 1. Two forms of replication on mongoDB.

B. mongoDB Auto-Sharding

[10] Auto-sharding in mongoDB makes it easy to
automatic balance data distribution over each shard,
addition of more machines and automatic failover.

Sharding means partitioning collections of data and
splitting them through machines, called shards. mon-
goDB offers automated share to balance and handle fail-
over with no user interference. Sharding uses replica set
to prevent failover.

mongoDB Documentation suggests a initial sharding
architecture as a start point for building a cluster. It

Fig. 2. mongoDB Sharding Architectural Overview

shows how to set up an architecture made of 3 shards
for scalability, and 3 copies of each piece of data.

Implementing this initial sharding architecture demon-
strates hor easy is to set up a mongoDB database
that makes use of some of the most important NoSQL
features discussed on this paper.

Fig. 3. Sharding start point, suggested by mongoDB documentation

V. CONCLUSION

NoSQL is not an alternative substitute for traditional
Relational Database Management Systems. Each kind of
database suits for different needs. And that is why each
solution must be evaluated for each application.

Although, we believe NoSQL Databases are very good
for applications that deal with large amount of data and
which has some main entities that associates to many
other secondary entities.

Our future efforts will focus on using a NoSQL
database to store data for two study case applications: an



Academic Administrative Tool and an Electronic Doc-
ument Management. This two domain systems should
demonstrate environments on which NoSQL databases
may be adopted.

ACKNOWLEDGEMENTS

I would like to thank some people who have en-
couraged me to begin this work, including professor
Fabio Nogueira de Lucena and professor Kleber Vieira
Cardoso; my colleagues at Instituto de Informática - Uni-
versidade Federal de Goiás. Also, my family members
and my loved girlfriend who inspire me to work harder
and harder every day.

REFERENCES

[1] R. Agrawal, H. Garcia-Molina, J. Gehrke, L. Gruenwald, L. M.
Haas, A. Y. Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. F. Ko-
rth, D. Kossmann, S. Madden, A. Ailamaki, R. Magoulas, B. C.
Ooi, T. O’Reilly, R. Ramakrishnan, S. Sarawagi, M. Stone-
braker, A. S. Szalay, G. Weikum, P. a. Bernstein, E. a. Brewer,
M. J. Carey, S. Chaudhuri, A. Doan, D. Florescu, and M. J.

Franklin, “The Claremont report on database research,” Com-
munications of the ACM, 2009.

[2] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?”
Technology News, 2010.

[3] A. Lith and J. Mattsson, “Investigating storage solutions for
large data,” Master’s thesis, Department of Computer Science
and Engineering – Chalmers University of Technology, 2010.

[4] M. Stonebraker, “SQL databases v. NoSQL databases,” Com-
munications of the ACM, 2010.

[5] D. Nussbaum and A. Agarwal, “Scalability of parallel ma-
chines,” Communications of the ACM, 1991.

[6] K. Orend, “Analysis and Classification of NoSQL Databases
and Evaluation of their Ability to Replace an Object-relational
Persistence Layer,” Master’s thesis, Fakultät für Informatik –
Technische Universität München, 2010.

[7] J. Dean and S. Ghemawat, “MapReduce : Simplified Data
Processing on Large Clusters,” Communications of the ACM,
2008.

[8] C. Vicknair, X. Nan, Y. Chen, and D. Wilkins, “A Comparison
of a Graph Database and a Relational Database,” Access, 2010.

[9] D. Mytton, “Choosing a non-relational database; why we mi-
grated from MySQL to MongoDB,” Boxed Ice Blog, 2009.

[10] I. 10gen, “mongoDB web site,” http://www.mongodb.org, 2011,
[Last visit: june 14th, 2011].




