Estudo de atividade citotóxica e inibição do ciclo celular de novos compostos a base de ouro.

Paula Roberta NUNES¹, Elisângela de Paula SILVEIRA-LACERDA¹. Hellen Karine Paes PORTO¹, Flávia de Castro PEREIRA¹

¹Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás - UFG, Goiânia, Goiás, Brasil; *e-mail: silveiralacerda@gmail.com

1.0. Introdução

Complexos de metais de transição têm sido o principal foco de vários grupos de pesquisa, devido ao seu potencial terapêutico e a ação biológica^{1,2}. Complexos a base de ouro vem sendo utilizados há muitas décadas para o tratamento de artrite reumatóide, atividade antitumoral, atividade anti-HIV, malária e bronquite asmática^{3,4,5,6,7,8,9}.

A auranofina é uma droga utilizada para a terapia artrite reumatóide desde os anos 70¹⁰. Na década de 80 observaram que a auranofina aumentou o período de vida de ratos portadores de leucemia P388 em comparação com a cisplatina^{11,12}. Testes citotóxicos *in vitro* com complexos de ouro foram realizados frentes a linhagens murinas P815, B16 e P388 visando encontrar compostos com valores de IC₅₀ que pudessem ser comparados com os resultados de compostos a base de cisplatina¹³.

As fluoroquinolonas são uma importante classe de antibióticos sintéticos com ação contra bactérias Gram-positiva e Gram-negativa¹⁴. A complexação de metais as fluoroquinolonas aumenta suas atividades biológicas¹⁵. O objetivo do presente estudo foi avaliar a atividade citotóxica e apoptótica dos complexos de Au(III) ligado a fluoroquinolonas frente as linhagens de células tumorais e normais.

2.0. Material e Métodos

2.1. Linhagens celulares e manutenção do cultivo celular

Utilizou-se as linhagens tumorais estabelecidas A20 (Linfoma murino), B16-F10 (Melanoma murino), K562 (Leucemia mielóide humana) e como células normais (controle), utilizou a linhagem estabelecida MCR-5 (fibroblasto de pulmão humano) e L919 (Fibroblasto de pulmão murino). As linhagens celulares foram mantidas em cultura a 37°C, 5% CO₂ em meio RPMI 1640 ou DMEM suplementado com 10% de soro fetal bovino e antibióticos segundo protocolo estabelecido pela *American Type Culture Collection* (ATCC,Rockville, MD, EUA).

2.2. Ensaio de viabilidade celular por Ensaio de MTT

As células foram semeadas em placas de 96 poços. No dia seguinte, concentrações crescentes (0,2 a 200µM) de drogas foram adicionadas, incubandose a seguir por 48 horas em incubadora com 5% de CO₂ e a 37°C. Ao final do período adiciona-se a solução de MTT, deixando-se em incubação por 5 horas, para metabolização do reagente. A solubilização do reagente formazan foi feita com SDS. A quantificação de densidade óptica (DO) foi medida por espectrofotômetro O valor de IC₅₀ foi determinada por meio da curva dose resposta utilizando o programa estatístico GraphPad Prism 4.02 (GraphPad Software, San Diego, CA, USA).

2.2. Citometria de fluxo: Avaliação das fases do ciclo celular.

Células tratadas e células controle mantidas em cultura líquida foram lavadas com tampão PBS com EDTA e fixadas em 1% de etanol gelado a 70%, sendo posteriormente tratadas com RNAse por 30 minutos e em seguida coradas com 5µg/mL de solução corante de iodeto de propídeo. Após o período de incubação, a intensidade da fluorescência foi determinada através de citometria de fluxo quantitativa, utilizando o Citômetro de Fluxo FACS Callibur (Becton Dickinson®, San José, CA).

2.4. Eletroforese em gel de Agarose

Para o ensaio de extração de DNA em gel de agarose as células de linhagens tumorais e normais foram incubadas com diferentes concentrações dos compostos em estudo por 48 h, incubados na estufa com 5% de CO₂ e a 37°C. As células foram retiradas do tratamento e centrifugadas e lavadas com PBS seguindo o protocolo de Sambrook, 2001. O DNA foi transferido para um gel de agarose, que foi submetido a eletroforese. O DNA foi visualizado através de transiluminação por ultravioleta, após a coloração por brometo de etídio utilizando um sistema de imageamento Omega[®] (UltraLum Inc. Claremont, CA, EUA).

2.5. Análise estatística

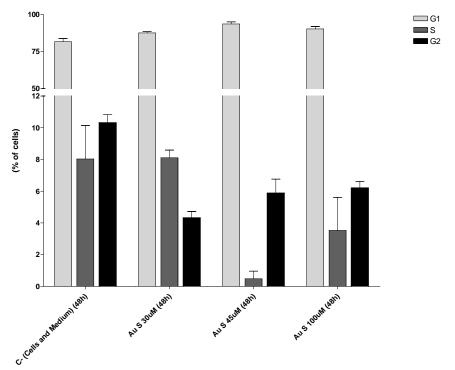
Para comparação entre os grupos tratados e controle foi utilizado Anova segundo um único critério e pós-teste Dunnet's (software GraphPad Prism V4). Como grau de significância de 95% (*p*<0.05).

3.0. Resultados

3.1. Ensaio de viabilidade celular por de MTT

Dos três compostos à base de ouro testados AuL, AuN e AuS observou-se que todos apresentaram atividade citotóxica significativa. O composto AuL

apresentou uma IC₅₀ de 181µM frente à linhagem sadia L919 e 52,8µM para a linhagem sadia MRC-5 e para a linhagem B16-F10 a IC₅₀ foi de 28,8µM, ou seja, quase duas vezes menor que a da MRC-5. Para as linhagens K562 e A20, a IC₅₀ foi de 50 e 48,9µM, respectivamente. Esses valores encontrados não foram estatisticamente significativos quando comparados com a linhagem sadia MRC-5, no entanto para a linhagem L919 a IC₅₀ foi estatisticamente significativa, visto que elas são três vezes menor que o da linhagem sadia como pode ser observado na tabela 1. O AuN apresentou uma IC₅₀ de 79,2 μ M para linhagem sadia L919 e IC₅₀ de 65,1µM para MRC-5. As linhagens B16-F10 e A20 apresentaram uma IC₅₀ de 26,6 e 24,9µM, respectivamente, menor que metade da concentração inibitória da linhagem MRC-5 e L919. Para a linhagem K562 a IC₅₀ foi de 55µM. O composto AuS apresentou uma IC₅₀ 104µM para a linhagem sadia MRC-5 e um IC₅₀ de 65,1µM para a linhagem L919. Já para as linhagens tumorais o composto apresentou uma maior atividade inibitória frente às linhagens B16-F10 e A20 cuja IC₅₀ são 45 e 48,3µM, respectivamente. Testes feitos com os ligantes isolados mostraram que eles não apresentaram atividade significativa (>200 µM), mostrando que a ação deles é intensificada na presença do ouro.


Tabela 1 – Concentrações inibitória (IC₅₀) dos compostos de ouro frente a linhagens tumorais e sadia.

Complexos			IC ₅₀ (μΜ)		
	MRC-5	L919	B16-F10	A20	K562
Au Levo	52,8	181	28,8	48,9	50
Au Nor	65,1	79,2	26,6	24,9	55
Au Spar	104	65,1	45	48,3	61,2

3.2. Ciclo celular

Dos três compostos analisados no teste de MTT o mais promissor foi o AuS e com ele realizou-se outros testes para caracterizar a ação de mecanismo de morte e ciclo celular do composto. No ensaio de ciclo celular da linhagem B16-F10 em 48 horas de tratamento observou-se que em geral o composto impediu que a célula entrasse na fase de síntese e prosseguisse o ciclo celular em todas as concentrações testadas, ou seja, houve a paralisação da célula na fase G1, onde observou-se o um maior percentual de células em G1 de 6%, 11% e 8% nas concentrações de 30, 45 e 100 µM, respectivamente, com relação ao controle. Dessa forma, observa-se que a droga impede a proliferação das células no ciclo

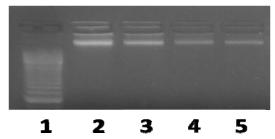

celular. Na concentração de 30µM, observou-se que menos de 10% das células foram encontradas em fase de síntese e a medida em que se aumenta a concentração da droga, menor a porcentagem de células em síntese. Pode-se notar que na concentração de 45 µM houve um aumento da fase G1 em comparação com o controle. Os dados do ciclo celular da linhagem B16-F10 pode ser observado na figura 2.

Figura 2 – Análise da cinética celular da célula B16-F10 frente ao tratamento com o composto Au S nas concentrações de 30, 45 e $100\mu M$.

3.3. Eletroforese em gel de agarose

Após o tratamento com o composto AuS frente a linhagem B16-F10, pode-se notar que não houve degradação do DNA na eletroforese em gel de agarose, não demonstrando o padrão de degradação decorrente de apoptose (Figura 3). observou-se a redução da banda de DNA nas concentrações de 30, 45 e 100 μM quando comparado com controle negativo.

Figura 3 – Eletroforese em gel de agarose de DNA de células B16-F10 tratadas com o composto AuS em comparação com o controle negativo. 2x10⁶ células foram cultivadas com diferentes

concentrações, (1) Lader, (2) Controle negativo, (3) AuS 30µM, (4) AuS 45µM e (5) AuS 100µM.

4.0. Conclusão

Nesse estudo, dentre os compostos estudados, o composto AuS demonstrou uma melhor atividade citotóxica frente às células tumorais e sadia e capacidade de parada no ciclo celular na fase G1 frente a linhagem tumoral B16-F10. No entanto, o composto não demonstrou padrão de banda para apoptose no teste de eletroforese em gel de agarose para a célula B16-F10, mostrando-se a necessidade de outros testes para a comprovação do mecanismo de morte celular.

5.0. Referências Bibliográficas

- BEIRITH, A.; CRECZYNSKI-PASA, T.B.; BONETTI, V.R.; KONZEN, M.; SEIFRIZ,I.; PAULA, M.M.S.; FRANCO, C.V.; CALIXTO, J.B. Antinociceptive properties and nitric oxide synthase inhibitory action of new ruthenium complexes. Eur. J. Pharmacol. p. 289-297, 1999.
- 2. SEIFRIZ, I.; KONZEN, M.; PAULA M.M.S.; et al. Synthesis, potentiometric titration, electrochemical investigation and biological properties of *trans*-[RuCl2(dinic)4] (dinics3,5-pyridinecarboxylic acid). **J. Inorg. Biochem.** p. 153-163, 1999.
- 3. GORDON, D. A. In **Textbook of Rheumatology**; Kelly, W. W., Harris, E. D., Ruddy, D., Sledge, C. B., Eds.; W. B. Saunders: New York; Chapter 48, pp 804-823, 1989.
- 4. SHAW, C. F., III In **Metal Compounds in Cancer Therapy**; Fricker, S. P., Ed.; Chapman and Hall: London, 1994; pp 46-64.
- 5. SADLER, P. J.; NASR, M.; NARAYANAN, V. L. In **Platinum Coordination Complexes in Cancer Chemotherapy**; Hacker, M. P., Douple, E. B., Krakoff, I. H., Eds.; Martinus Nijhoff Publishing: Boston, 1984; pp 209-304.
- 6. SHAPIRO, D. L.; MASCI, J. R. J. Rheumatol., v.23, p.1818-1820, 1996.
- NAVARRO, M.; PÉREZ, H.; SÁNCHEZ-DELGADO, R. A. J. Med Chem., v. 40, p.1937-1939, 1997.
- 8. VANARSDEL, P. P., Jr. J. Allergy Clin. Immunol. v.67, p.348-349,1981.
- 9. MURANAKA, M.; NAKAJIMA, K.; SUZUKI, S. **J. Allergy Clin. Immunol**. *v.67*, p.350-356, 1981
- 10. KEAN, W.F.; HART, L.; BUCHANAN, W.W. Br. J. Rheumatol. v.36, p. 560, 1997.
- 11. MIRABELLI, C. J.; JOHNSON, R. K.; SUNG, C. M.; FAUCETTE, L.; MUIRHEAD, K.; CROOKE, S. T. **Cancer Res**. v.45, p. 32-39, 1985.
- 12. SIMON, T. M.; KUNISHIMA, D.H.; VIBERT, G. J.; LORBER, **A. Cancer Res**. v. *41*, p. 94-97, 1981
- 13. MCKEAGE, M. J., MAHARAJ, L., BERNERS-PRICE, S. J. Mechanisms of cytotoxicity and antitumor activity of gold(I) phosphine complexes: the possible role of mitochondria, **Coord Chem. Rev.** *v.* 232, p. 127–135, 2002.
- 14. BRIGHTY KE, GOOTZ TD. Chemistry and mechanism of action of the quinolone antibacterials. **J Antimicrob Chemother**. v.45: p. 437-46, 2000.
- PSOMAS, G.; DENDRINOU-SAMARA, C.; PHILIPPAKOPOULOS, P.; TANGOULIS, V.; RAPTOPOULOU, C. P.; SAMARAS, E.; KESSISSOGLOU, D. P.; Inorg. Chim. Acta, v. 272, p 24, 1998.

Apoio Financeiro: Funape; CAPES e CNPq.