Influência dos tratamentos superficiais na resistência de união do reparo em resina a base de silorano: Análise longitudinal

Raphaella Mendes GUIMARÃES; João Batista de SOUZA; Fernanda Ribeiro SANTANA; Paula Cicília Faquim RODRIGUES; Carlos ESTRELA; Rodrigo Borges FONSECA

Faculdade de Odontologia - UFG.

raphaella.guimaraes@hotmail.com / jbs.ufg@gmail.com

Palavras-chave: Restauração dentária permanente; falha de restauração dentária; reparação de restauração dentária; estudo comparativo.

1 INTRODUÇÃO

A realidade da Odontologia restauradora atual se baseia em princípios filosóficos que resultam em maior conservação de estruturas dentais em associação a maior longevidade. Isto se tornou possível por meio da Odontologia adesiva que trouxe a possibilidade de uma abordagem mais conservadora para a restauração do dente, baseada na redução do tamanho das cavidades e na adesão dos materiais restauradores (compósitos resinosos) a estrutura dental¹. Esta permitiu também o reparo de restaurações pré-existentes ao invés de sua substituição total¹.

Restaurações podem sofrer degradação ao longo do tempo¹. Os efeitos das mudanças de pH⁴, das enzimas salivares⁵ e do ambiente úmido⁶⁻⁸ sobre a degradação dos compósitos têm sido extensivamente relatados na literatura¹. Assim, apesar da inquestionável evolução das resinas compostas, constata-se, com certa frequência, a ocorrência de fraturas coesivas e de desgastes químicos e mecânicos da superfície dessas restaurações^{2,3,4,9}. Além disso, outras ocorrências, como descoloração marginal, falhas de adesão, manchamentos, perda de contorno anatômico e pequenas fraturas podem ser verificadas, comprometendo a durabilidade a longo prazo da restauração, o que leva à necessidade de sua substituição^{2,3}.

Quando possível, pode-se realizar reparo na restauração defeituosa removendose parte dela e completando com uma nova camada de resina composta ^{2,3,9}. Este procedimento é mais conservador e aumenta a longevidade da restauração com baixo custo ^{2,9,10}. No entanto, esse tipo de procedimento ainda deixa dúvidas com relação à resistência adesiva entre a resina já existente e a recém-aplicada. Vários estudos têm sido realizados no sentido de verificar a resistência da união entre a superfície da restauração e a resina a ser adicionada, nos quais vêm sendo testados diversos tratamentos de superfície na resina já existente ^{1,2,3,9}.

Porém, apesar de existir uma vasta literatura abordando a necessidade de tratamento superficial no reparo de compósitos, todos estes estudos empregaram compósitos à base de metacrilato. E recentemente foi desenvolvido um novo compósito (Filtek P90, 3M-ESPE, St. Paul, MN, USA), indicado para dentes posteriores, que possui como matriz resinosa o silorano.

Considerando-se a composição diferenciada da resina a base de silorano (Filtek P90, 3M-ESPE, St. Paul, MN, USA) e que não existem relatos prévios a respeito da influência dos tratamentos superficiais na resistência adesiva do reparo em silorano, o objetivo deste estudo é avaliar: 1) o efeito de diferentes tratamentos de superfície na resistência de união entre a resina composta envelhecida, a base de silorano (Filtek P90, 3M-ESPE), e a resina utilizada para o reparo, por meio de ensaio de microtração; 2) os padrões produzidos por técnicas específicas de tratamento de superfície na resina composta envelhecida, a base de silorano (Filtek P90, 3M-ESPE), por meio de microscopia eletrônica de varredura (MEV).

2 MATERIAL E MÉTODOS

a) Obtenção dos espécimes de resina composta a serem reparados

Foram confeccionados 160 blocos de resina composta Filtek P90 (lote n. 175795, cor A2, 3M-ESPE, St. Paul, MN, USA), por meio de uma matriz de silicona Zeta Labor (Hands 85 Shore A Zeta Labor, lote n. 101314, Zhermack, Italy), com as seguintes dimensões: 4mm (comprimento) X 6mm (espessura) X 4mm (altura),.

Os blocos foram construídos a partir da inserção da resina composta Filtek P90 no molde em dois incrementos de 2mm. No último incremento foi utilizada uma tira de poliéster. Estes foram fotopolimerizados por 20 s cada, com sistema de fotopolimerização Ultra Blue (Ultra Blue IS 600 mw, n. série: 6411, DMC Equipamentos Ltda) de intensidade 600 mW/cm². Ao final, foi realizada uma fotopolimerização de 40s na face que iria receber o tratamento de superfície.

Posteriormente, os blocos de resina foram colocados individualmente em água deionizada e armazenados em estufa a 37°C durante 9 dias. Após o envelhecimento, os blocos foram aleatoriamente distribuídos nos grupos para receberem o tratamento de superfície.

- b) Tratamentos de superfície
 - Os tratamentos de superfície foram realizados conforme os protocolos descritos abaixo:
- Ausência de tratamento superficial (Cont controle) não foi realizado nenhum tratamento superficial.
- 2. Silano (Si) o silano (RelyX Ceramic Primer, 3M-ESPE, St. Paul, MN, USA) foi aplicado e deixado evaporar-se por 1min.
- 3. Ácido fosfórico 37% (Af) condicionamento com ácido fosfórico 37% (FGM) por 30s, lavagem por 60s e secagem com papel absorvente.
- 4. Ácido fosfórico 35% + Silano (AfSi) condicionamento com ácido fosfórico e, em seguida, aplicação de silano seguindo os protocolos descritos nos grupos Af e Si, respectivamente.
- Ácido hidrofluorídrico 10% (Ah) condicionamento com ácido hidrofluorídrico 10% (Dentsply, Petrópolis, RJ, Brasil) por 2min¹, lavagem por 60s e secagem com papel absorvente.
- 6. Ácido hidrofluorídrico 10% + Silano (AhSi) condicionamento com ácido hidrofluorídrico e, em seguida, aplicação de silano seguindo os protocolos descritos nos grupos Ah e Si, respectivamente.
- 7. Jateamento com óxido de alumínio (J) jateamento com óxido de alumínio de 50μm (n. 0425, Bioart, São Carlos, SP, Brasil) de acordo com os seguintes parâmetros: ângulo de 90°, distância de 10mm da superfície a ser tratada, tempo de aplicação de 20 segundos e pressão de 2,8 bar ¹.
- Jateamento com óxido de alumínio + Silano (JSi) jateamento com óxido de alumínio e, em seguida, aplicação de silano seguindo os protocolos descritos nos grupos J e Si, respectivamente.
- 9. Ranhuras com ponta diamantada (R) tratamento superficial com ponta diamantada grossa (nº 3100, KG Sorensen, Barueri, SP, Brasil).
- 10.Ranhuras com ponta diamantada + Silano (RSi) tratada superficial com ponta diamantada grossa (nº 3100, KG Sorensen, Barueri, SP, Brasil) e, em seguida, aplicação de silano seguindo os protocolos descritos nos grupos R e Si, respectivamente.

Após os tratamentos superficiais os blocos foram aleatoriamente distribuídos no grupo F, para aplicação do sistema adesivo silorano da Filtek P90 (3M-ESPE, St.

Paul, MN, USA) e no grupo S, sistema adesivo Adper Scotchbond Multi-uso (3M-ESPE, St. Paul, MN, USA).

c) Realização do reparo nos espécimes preparados

Novos moldes de silicona foram confeccionados com as seguintes dimensões: 8mm (comprimento) X 6mm (espessura) X 4mm (altura), de forma que após a inserção no molde de um bloco de resina a ser reparado (4X6X4mm) ficou um espaço restante de 4X6X4mm, no qual foi inserida a nova resina do reparo, Filtek P90 (lote n 130928, cor A3, 3M-ESPE, St. Paul, MN, USA) (P) ou Filtek Z350 XT(cor A3, N lote182351, 3M-ESPE, St. Paul, MN, USA) (Z). Após a polimerização final, as amostras foram armazenadas em água deionizada por 24 horas a 37°C.

d) Preparo das amostras para o ensaio de microtração

Cada bloco foi levado ao micrótomo de tecido duro (Isomet 1000, Buehler, Lake Bluff, IL, USA) e então seccionado obtendo-se assim amostras em forma de palito (± 1 mm²). Os palitos concebidos foram armazenados por 6 meses.

Após envelhecimento os palitos foram levados a máquina de ensaio mecânico EMIC 2000DL (São José dos Pinhais, PR, Brasil) para teste de microtração.

e) Microscopia Eletrônica de Varredura (MEV)

Também foram confeccionados 10 blocos de resina composta adicionais para caracterização da superfície topográfica do material por MEV, após a realização dos tratamentos superficiais.

3 RESULTADOS ESPERADOS

Este trabalho encontra-se em execução, as amostras estão no quarto mês do envelhecimento acelerado e foi realizada a MEV dos 10 blocos de resina composta.

Até o momento, na data limite para envio do resumo, não há resultados para apresentar. No entanto, baseando-se na literatura existente, espera-se que: (1) métodos mecânicos (Jato de AlO3 e Ranhuras com ponta diamantada) sejam mais efetivos que os métodos químicos (ácido fosfórico, ácido hidrofluorídrico e silano) no preparo das superfícies a serem reparadas; (2) e o adesivo e a resina a base de silorano da Filtek P90 promovam maior resistência de união.

4 REFERÊNCIAS

- 1. RODRIGUES, S.A. JR.; FERRACANE, J.L.; DELLA BONA, A. Influence of surface treatments on the bond strength of repaired resin composite restorative materials. **Dent Mater.**, v.25, n.4, p.442-51, 2009.
- MURAD, C.G. Avaliação da resistência à tração de reparos em resina composta. Dissertação (Mestrado) – Faculdade de Odontologia de Bauru, Universidade de São Paulo. Bauru, 2003. 117p.
- 3. SILVEIRA RR. Avaliação da resistência à micro-tração de reparos em resina composta, utilizando-se diferentes tratamentos de superfície. **Tese (Doutorado) Faculdade de Odontologia de Bauru, Universidade de São Paulo.** Bauru, 2003. 132p.
- 4. TYAS, M.J.; BURROW, M.F. Subsurface degradation of resin-based composites. **Dent Mater.**, v.23, n.8, p.944-51 2007.
- 5. JAFFER, F.; FINER, Y.; SANTERRE, J.P. Interactions between resin monomers and commercial composite resins with human saliva derived esterases. **Biomaterials.**, v.23, n.7, p.1707-19, 2002.
- 6. FERRACANE, J.L. Elution of leachable components from composites. **J Oral Rehabil.**, v.21, n.4, p.441-52, 1994.
- 7. ÖRTENGREN, U.; WELLENDORF, H.; KARLSSON, S.; RUYTER, I. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. **J Oral Rehabil.**, v.28, n.12, p.1106-15, 2001.
- 8. GRÖGER, G.; ROSENTRITT, M.; BEHR, M.; SCHRÖDER, J.; HANDEL, G. Dental resin materials in vivo-TEM results after one year: a pilot study. **J Mater Sci Mater Med.**, v.17, n.9, p.825-8, 2006.
- 9. YESILYURT, C.; KUSGOZ, A.; BAYRAM, M.; ULKER, M. Initial repair bond strength of a nano-filled hybrid resin: effect of surface treatments and bonding agents. **J Esthet Restor Dent.**, v.2, n.4, p.251-60, 2009.
- 10. BONSTEIN, T.; GARLAPO, D.; DONARUMMO, JR.J.; BUSH, J.P. Evaluation of varied repaired protocols applied to aged composite resin. **J Adhes Dent.**, v.7, n.1, p.41-9, 2005.