TORTA SALGADA A PARTIR DE HORTALIÇAS E SEUS RESÍDUOS

Renata Fleury Curado RORIZ^{1*}; Clarissa DAMIANI²; Ulisses Rodrigues de ALENCAR³; Melissa Yurie TOGUCHI⁴; Vânia Silva CARVALHO⁵; Eduardo Ramirez ASQUIERI⁶

PALAVRAS-CHAVE: desperdício, aproveitamento de resíduos, hortaliças, desenvolvimento de produtos

1 INTRODUÇÃO

O desperdício de alimentos tem despertado atenção do ponto de vista econômico e social. Faz-se necessário reduzir perdas na cadeia produtiva e, assim, beneficiar todos os envolvidos por meio do aumento da disponibilidade e da qualidade dos produtos e diminuição dos custos para intermediários e consumidores (MARTINS & FARIAS, 2002). A composição de alimentos de origem vegetal, consumidos regularmente pela população, requer mais estudos e divulgação como forma de conscientizar para utilização adequada e o aproveitamento integral com consequente redução do desperdício (MONTEIRO, 2009). Uma alimentação rica em nutrientes pode ser alcançada a partir de preparações elaboradas com cascas, talos e folhas, partes normalmente desprezadas (GONDIM et al., 2005).

O desperdício gerado pelo processamento de hortaliças foi avaliado e revelou que o maior índice de perda do peso total (41,6%) ocorre na abobrinha, seguido do chuchu (29%) com maiores concentrações nas sementes e cascas respectivamente. As perdas calculadas para as hortaliças em estudo foram de 24,8%, sendo que poderiam ser aproveitadas, em sua maioria (MARCHETO et al., 2008). Folhas de cenoura foram caracterizadas quimicamente, a fim de conhecer a composição centesimal, teores de vitaminas, fibras dietéticas, minerais e nitrato, além de pH e acidez total titulável. Os resultados comprovaram que esta parte vegetativa apresenta teores significativos de vitamina C e é boa fonte de fibras dietéticas e

Prof^a. Dr^a. PPGCTA, EAEA, UFG, GO, Brasil. E-mail: damianiclarissa@hotmail.com.

Mestranda do Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Escola de Agronomia e Engenharia de Alimentos (EAEA), Universidade Federal de Goiás (UFG), Campus Samambaia Rodovia Goiânia / Nova Veneza km 0 Cx Postal 131, 74001-970 Goiânia, GO, Brasil. Tel.: (62) 3521 1541 GO, E-mail: renatafleury@hotmail.com.

^{*} Autor para correspondências.

Graduando do Curso de Engenharia de Alimentos, EAEA, UFG, GO, Brasil. E-mail: ulissesra@hotmail.com.

Graduanda do Curso de Engenharia de Alimentos, EAEA, UFG, GO, Brasil. E-mail: melzinhayt@hotmail.com.

Mestranda PPGCTA, EAEA, UFG. E-mail: vaniacarvalho18@gmail.com.

Prof. Dr. Faculdade de Farmácia, UFG, GO, Brasil. E-mail: asquieri@gmail.com.

minerais, podendo ser utilizada para enriquecer preparações (PEREIRA et al.,2003). Outro estudo testou aceitação de tortas salgadas elaboradas com reaproveitamento de alimentos, cujas formulações (com e sem trigo integral) foram recheadas com proteína de soja texturizada e talos (brócolis e couve-flor). Os resultados demonstraram que ambas as formulações foram bem aceitas (SOUZA et a., 2007). Logo, o objetivo deste trabalho foi desenvolver torta salgada, a partir de polpa, casca, talos e folhas de hortaliças, como forma de evitar o desperdício, reduzir a quantidade de resíduos gerados no meio ambiente e agregar valor à preparação, além de determinar a composição química e avaliar sua qualidade microbiológica.

2 MATERIAL E MÉTODOS

O processamento da torta seguiu etapas apresentadas na Figura 1.

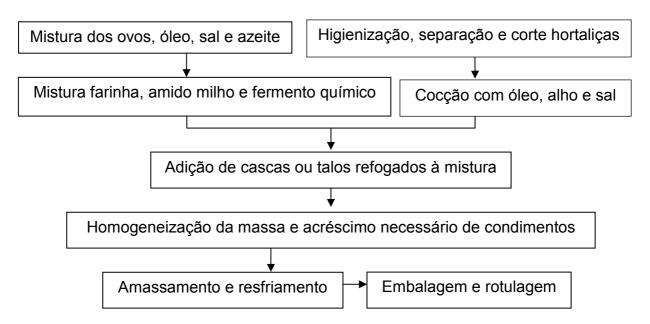


Figura 1. Fluxograma de processamento da torta salgada de hortaliças e seus resíduos.

A preparação foi assada por 30 minutos em forno a 180°C, porcionada (15x15 cm), embalada e armazenada sob congelamento (-18°C) para análises químicas. Amostras de 100g foram coletadas logo após o processamento e encaminhadas para análises microbiológicas. Os ingredientes foram adquiridos no comércio local e a formulação da torta está descrita na Tabela 1.

Tabela 1 Formulação da torta salgada de hortaliças e resíduos

INGREDIENTE	PORCENTAGEM (%)
Ovo	7,0
Óleo de soja	24,9
Leite	24,9
Fermento químico	1,5
Farinha de trigo	6,2
Amido de milho	6,2
Abobrinha Italiana	7,8
Chuchu com casca e sem semente	5,7
Talos e folhas de brócolis	4,4
Talos de couve	3,1
Sal	0,5
Alho finamente picado	0,3
Pimenta do reino	0,1
Orégano	0,1
Pimenta de cheiro	0,4
Cebola	6,7
Tomilho	0,1
Pimenta calabresa	0,1

As análises químicas foram realizadas em triplicata e os resultados expressos em porcentagem. Foram determinados teores de umidade, cinzas e proteínas, conforme A.O.A.C (2006) e lipídios segundo metodologia de Bligh & Dyer (1959). Carboidratos totais foram determinados pelo método fenol sulfúrico (Dubois et al., 1956) e o valor energético estimado conforme os valores de conversão de Atwater, descritos em Wilson et al. (1982) com resultados expressos em Kcal. Acidez total titulável, pH e sólidos solúveis foram determinados de acordo com a A.O.A.C (2006). Fibras foram determinadas pelo método enzimático gravimétrico, conforme A.O.A.C (2006). Análises microbiológicas foram realizadas de acordo com os métodos descritos no *Compendium of methods for the microbiological examination of foods* (DOWNES; ITO, 2001) e os resultados foram comparados com os padrões microbiológicos, definidos pela Resolução RDC nº 12 da ANVISA (BRASIL, 2001).

3 RESULTADOS E DISCUSSÃO

Os resultados da composição química da torta salgada, elaborada com hortaliças e seus resíduos, estão apresentados na tabela 2.

Tabela 2 Média da composição química <u>+</u> desvio padrão (coeficiente de variação) da torta salgada de hortaliças e seus resíduos.

CONSTITUINTES	TORTA SALGADA
Umidade (%)	41,79 ± 1,01 (2,42)
Cinzas (%)	2,48 ± 0,08 (3,37)
Lipídios (%)	15,08 ± 0,85 (5,62)
Proteínas (%)	5,42 ± 0,39 (7,19)
Carboidratos totais (%)	35,21 ± 2,49 (7,06)
Fibra Alimentar total (%)	4,53 ± 0,06 (0,01)
Valor Calórico (Kcal)	298,26 ± 14,63 (4,9)
Acidez total titulável (%)	0,10 ± 0,01 (0,11)
Sólidos Solúveis (°Brix)	16 ± 1,73 (10,82)
pH	$7,85 \pm 0,06 \ (0,73)$

Os resultados encontrados podem ser comparados com o estudo de Souza et al. (2007), quando avaliaram duas formulações de tortas recheadas com talos e cascas, em proporções diferentes (teores 50% maior e 50% menor de resíduos), além de outros ingredientes. A análise química das cascas, desses autores, apresentou resultados para o teor proteína de 2,1% (cenoura) e 1,4% (beterraba) e para o teor fibra 1,0% (cenoura) e 3,1% (beterraba). Os talos analisados apresentaram teores de proteínas de 0,9% (couve flor) e 1,5g (brócolis) e teores de fibras de 2,8% (couve flor) e 4,0% (brócolis). Foi verificado, também, que a formulação com teor 50% maior apresentou maiores teores umidade (58,2%), proteína (4,5%), fibras alimentares (1,6%) e cinzas (2,9%) que a formulação com teor 50% menor de resíduos. Com relação à fibra alimentar, a torta salgada de hortaliças e seus resíduos apresentou 4,53g de fibras totais, das quais 3,16g são fibras insolúveis e 1,36g fibras solúveis.

Silva et al. (3003) avaliaram a composição em nutrientes e valor energético de empadão goiano, cuja formulação apresenta alguns ingredientes que compõem a torta salgada neste estudo, além de carnes, banha, azeitona, molho de tomate e queijo tipo minas fresco. O empadão apresentou teor de lipídios de 10,63%, carboidratos totais de 15,90%, valor calórico de 206Kcal e umidade de 58,7%. O teor de lipídios encontrado na torta de hortaliças e seus resíduos foi de 15,08%, carboidratos totais de 35,21% e valor calórico de 298,26Kcal. A umidade representou 41,79% da composição com pH neutro e teor de sólidos solúveis de 16°Brix. Portanto, os resultados encontrados neste trabalho estão dentro do padrão descrito para tortas.

A torta salgada de hortaliças e resíduos apresentou perfil microbiológico aceitável, com base na RDC nº. 12 da ANVISA, com ausência de coliformes a 35 e a 45°C, *Salmonella* sp e fungos e leveduras.

4 CONCLUSÕES

O aproveitamento de hortaliças e seus resíduos na preparação de torta salgada é uma proposta tecnológica viável para diminuir o desperdício que, normalmente, ocorre durante o processamento e são descartados no meio ambiente.

O produto desenvolvido apresentou características adequadas aos padrões microbiológicos estabelecidos e os resíduos acrescentados agregaram valor nutricional à preparação. Portanto a torta, representa uma alternativa para alimentação saudável e sustentável.

5 REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIATION OF OFFICIAL AGRICULTURAL CHEMISTIS. **Official methods of the Association of the Agricultural Chemists**. 18. ed. Washington, 2006. v. 2.

BLIGH, E.G. & DYER, W.J. A rapid method of total lipid extraction and purification. **Canadian Journal of Biochemistry and Physiology,** Ottawa, v. 37, n. 7, p. 911-917, 1959.

BRASIL, Ministério da Saúde. **Resolução de Diretoria Colegiada nº 12, de 24 de Julho de 1978**. Normas Técnicas Relativas a Alimentos e Bebidas. Brasília, DF: ANVISA, 2001. Disponível em: http://www.anvisa.gov.br/e-legis/>. Acesso em: 14 mar. 2011.

DOWNES, F. P.; ITO, K. Compendium of methods for the microbiological examination of foods. Washington: APHA, 2001. 600p.

DUBOIS, M. K. A.; GILLES, H. J. K.; REBERS, P. A.; SMITH, F. Colorimetric method for determination of sugars and related substances. **Analytical Chemistry**, Minnesota, v. 28, n. 3, p. 350-355, Mar. 1956.

GONDIM, J. A. M; MOURA, M. F. V.; DANTAS, A. S.; MEDEIROS, K. M. S. Composição centesimal e de minerais em cascas de frutas. **Ciência e Tecnologia de Alimentos**, Campinas, v. 25, n. 4, p. 825-827, 2005.

MARCHETO, A. M. P.; ATAIDE, H. H.; MASSON, M. L. F.; PELIZER, L. H.; PEREIRA, C. H. C.; SENDÃO, M. C. Avaliação das partes desperdiçadas de

- alimentos no setor de hortifruti visando seu reaproveitamento. **Rev. Simbio-Logias**, Botucatu, v. 1, n. 2, 2008.
- MARTINS, C. R. M.; FARIAS, R. M. de. Produção de alimentos x desperdício: tipos, causas e como reduzir perdas na produção agrícola revisão. **Revista da FZVA**, Uruguaiana, v. 9, p. 20-32. 2002.
- MONTEIRO, B. A. Valor nutricional de partes convencionais e não convencionais de frutas e hortaliças. 2009. 62p. Dissertação (Mestrado em Agronomia) Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, Botucatu, 2009.
- PEREIRA, G. I. S. P.; PEREIRA, R. G. F. A.; BARCELOS, M. F. P. B.; MORAIS, A. R. M. de. Avaliação química da folha de cenoura visando ao seu aproveitamento na alimentação humana. **Ciência e agrotecnologia**, Lavras. v. 27, n. 4, p. 852-857, 2003.
- SILVA, M. R., SILVA, M. S., SILVA, P. R. M., OLIVEIRA, A. G., AMADOR, A. C. C., NAVES, M. M. V. Composição em nutrientes e valores energéticos de pratos tradicionais de Goiás, Brasil. **Ciência e Tecnologia de Alimentos**, Campinas, 23 (Supl). 140-145, 2003.
- SOUZA, P. D. J.; NOVELLO, D.; ALMEIDA, J. M.; QUINTILIANO, D. A. Análise sensorial e nutricional de torta salgada elaborada através do aproveitamento alternativo de talos e cascas de hortaliças. **Alimentos e Nutrição,** Araraquara, v. 18, n. 1, p. 55-60, 2007.