Taninos hidrolisáveis de folhas de Eucalyptus microcorys

Ana Paula da Silva², Sara Santiago Naves¹, Gilmara Aparecida Corrêa Fortes¹, Géssica Adriana Vasconcelos¹, Carolina de Fatima Reis², Suzana da Costa Santos^{1*} ¹Instituto de Química, ²Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia-GO 74001-970, Brasil

E-mail: anapaula_047@hotmail.com, suzana@quimica.ufg.br

Palavras-chave: Eucalyptus microcorys, taninos hidrolisáveis, elagitaninos

1 INTRODUÇÃO

A espécie *Eucalyptus microcorys* F. Muell, conhecida como Tallowwood, ocorre na costa nordeste de New South Wales e sudeste de Queensland, Austrália. Estas são regiões de clima quente e úmido com chuvas predominantes no verão (Moore *et al.*, 2004). Devido às semelhanças de clima, esta espécie foi trazida para o centro-oeste do Brasil principalmente por fornecer madeira de boa qualidade, que pode ser usada para confecção de móveis, postes, dormentes e na construção civil.

Além do uso madeireiro, esta espécie também apresenta grande potencial medicinal, pois seu óleo essencial é rico em 1,8-cineol (86,7%) (Foudil-Cherif *et al.*, 2000; Estanislau *et al.*, 2001), substância com atividade expectorante e antisséptica das vias respiratórias. A espécie *E. globulus* Labill. é a principal fonte desta substância, porém ela é de difícil cultivo em regiões de clima quente como o centro-oeste brasileiro.

Moore e colaboradores (2004) detectaram a presença de taninos hidrolisáveis nas folhas de *E. microcorys*, observando inclusive que esta classe de compostos representa aproximadamente 90% dos metabólitos secundários desta planta, ficando o óleo essencial com apenas 2%.

Taninos hidrolisáveis, incluindo o dímero macrocíclico Oenoteina B, já foram isolados no gênero *Eucalyptus*, nas espécies *E. viminalis, E. consideniana* e *E. alba* (Santos e Waterman, 2001; Yoshida *et al.*, 1992a) e no gênero *Eugenia*, na espécie *Eugenia uniflora* (Lee *et al.*, 1997).

*Revisado pelo orientador. Ana P. Silva (orientanda), Suzana C. Santos (orientador) e Gilmara A. C. Fortes, Sara S. Naves, Géssica A. Vasconcelos, Carolina F. Reis (colaboradores).

Vários estudos comprovaram atividades farmacológicas para esta classe de substâncias, dentre estas atividades podem-se citar: antiviral e principalmente antitumoral (Okuda *et al.*, 1989a).

Esta espécie de *Eucalipto* que se adaptou bem ao clima e solo do Cerrado Goiano apresenta grande potencial para seu aproveitamento econômico, tanto em relação à utilização da madeira para confecção de móveis, como também para fins medicinais, pela utilização do óleo essencial e dos taninos hidrolisáveis contidos em suas folhas.

Em nosso laboratório foi realizado o estudo da sazonalidade dos compostos fenólicos presentes nas folhas desta espécie (Souza et al., 2007). Observou-se a existência de uma forte correlação entre fatores climáticos e a biossíntese destes compostos. Neste primeiro trabalho foram utilizados ensaios colorimétricos para a quantificação de fenóis totais, taninos e flavonóides.

Após este estudo inicial o extrato bruto das folhas foi preparado, particionado entre solventes e a fração solúvel em metanol foi fracionada por cromatografia em Diaion HP-20. Após refracionamento de várias sub-frações em Sephadex LH-20 conseguiu-se isolar e identificar cinco elagitaninos, sendo quatro monômeros (Tellimagrandin I, Genin D, 4,6-O-HHDP-glicose e Oenotheina C) e um dímero (Oenotheina B), além de um galoil éster (Ácido gentísico-5-O-(6'-O-galoil)glucose) (Fortes e Santos, 2009; Fortes *et al.*, 2010).

2 **OBJETIVOS**

Continuar o isolamento e elucidação estrutural de taninos hidrolisáveis presentes nas folhas da espécie *E. microcorys*.

3 METODOLOGIA

3.1 Fracionamento da fração Metanólica

3.1.1 Fracionamentos das sub-frações EM10, EM11 e EM14

A partir da fração EM3 (6,0 g), que foi submetida à cromatografia em coluna com Diaion HP-20 como adsorvente, obtiveram-se 63 frações, que foram reunidas em dez frações principais após análise por cromatografia em camada delgada (Esquema 1). Essas 10 frações receberam os códigos: EM7 a EM16. A fração EM10 (0,24 g) foi refracionada em coluna com Sephadex LH-20 como adsorvente (coluna de adsorvente 27 x 1,8 cm). Utilizou-se gradiente de etanol/clorofórmio (1:1 e 7:3), etanol, etanol/metanol (10, 20, 30....80% metanol) e metanol. Foram coletadas 99 frações, que foram reunidas em 7 frações principais (EM168 a EM174) após análise por cromatografia em camada delgada (ccd).

A fração EM11 (0,88 g) foi refracionada em coluna com Sephadex LH-20 (coluna de adsorvente 34 x 1,8 cm). Utilizou-se gradiente de etanol/clorofórmio (1:1 e 7:3), etanol, etanol/metanol (10, 20, 30....80% metanol) e metanol. Foram coletadas 51 frações, que foram reunidas em 15 frações principais (EM120 a EM134) após análise por ccd.

A fração EM14 (0,20 g) foi refracionada em coluna com Sephadex LH-20 (coluna de adsorvente 26 x 1,8 cm). Utilizou-se gradiente de etanol/clorofórmio (1:1 e 7:3), etanol, etanol/metanol (10, 20, 30....80% metanol) e metanol. Foram coletadas 82 frações, que foram reunidas em 11 frações principais (EM175 a EM185) após análise por ccd.

Esquema 1. Fracionamento das sub-frações EM10, EM11 e EM14

3.2 Fracionamento da fração Acetato de Etila

A fração Acetato de Etila (5,5 g) foi submetida à cromatografia em coluna com Sephadex LH-20 (27 x 4 cm), usando água/etanol/acetona (7:2:1) (Esquema 2). Foram coletadas 71 frações, que foram reunidas em 13 frações principais (EAE1 a EAE13) após análise por ccd. A fração EAE7 (0,21 g) foi refracionada em coluna com Sephadex LH-20 (27 x 1,8 cm). Utilizou-se gradiente de etanol/clorofórmio (1:1 e 7:3), etanol, etanol/metanol (10, 20, 30....80% metanol) e metanol. Foram coletadas 88 frações, que foram reunidas em 15 frações principais (EAE14 a EAE28) após análise por ccd.

A fração EAE9 (0,17 g) foi refracionada em coluna com Sephadex LH-20 (27 x 1,8 cm). Gradiente: etanol/clorofórmio (1:1 e 7:3), etanol, etanol/metanol (10, 20, 30....90% metanol) e metanol. Foram coletadas 99 frações, que foram reunidas em 10 frações principais (EAE29 a EAE38) após análise por ccd.

Esquema 2. Fracionamento da fração Acetato de Etila

3.3 Análise espectroscópica das frações obtidas a partir da cromatografia

As frações mais puras foram analisadas por Ressonância Magnética Nuclear de H^1 e C^{13} , uni e bidimensional, em equipamento Brucker Advance 500, solubilizadas em acetona-D₆ ou acetona-D₆ + D₂O, quando necessário.

4 RESULTADOS E DISCUSSÃO

4.1 Fracionamentos das sub-frações metanólicas e acetato de etila

Dando continuidade ao estudo de sazonalidade que foi realizado previamente com esta espécie de *Eucalyptus* (Souza *et al.*, 2007), escolhemos amostras de folhas de meses que continham altos teores de taninos hidrolisáveis, julho e outubro, para preparação do extrato bruto, que apresentou um rendimento de extração de 8,4%. O primeiro fracionamento deste extrato foi realizado através de partição com acetato de etila, com isso retiram-se da fase aquosas as substâncias de média polaridade, tais como: flavonóides, ácidos fenólicos e alguns monômeros de taninos hidrolisáveis. A fase aquosa, após liofilização, foi dissolvida em metanol para separar os açúcares e polissacarídeos, insolúveis em metanol, dos taninos hidrolisáveis (monômeros e dímeros), solúveis em metanol.

Iniciou-se o fracionamento pela fração solúvel em metanol, por ser esta a mais rica em taninos hidrolisáveis e a que apresentou maior massa (26,7 g). O gel vinílico polimérico Diaion HP-20 foi escolhido por ser o mais adequado para uma separação mais grosseira de substâncias polares (Okuda *et al.*, 1989b), com isso obtivemos seis frações distintas, usando um gradiente de água para metanol.

As duas frações que se mostraram mais promissoras, EM3 e EM5, foram refracionadas, inicialmente com o uso de Diaion HP-20, devido a elevada massa de cada fração (~6 g). Os refracionamentos seguintes foram realizados com o gel dextrano hidroxipropilado, Sephadex LH-20, que mostrou separações mais eficientes quando um gradiente com aumento de polaridade foi usado, clorofórmio/etanol, etanol e metanol, desta forma o mecanismo de separação é mais por adsorção de substâncias do que por filtração em gel (Okuda *et al.*, 1989b). Após estes fracionamentos iniciais conseguiu-se isolar e identificar cinco elagitaninos, sendo quatro monômeros (Tellimagrandin I, Genin D, 4,6-O-HHDP-glicose e Oenotheina C) e um dímero (Oenotheina B), além de um galoil éster (Ácido gentísico-5-O-(6'-O-galoil)glucose) (Fortes e Santos, 2009; Fortes *et al.*, 2010).

Neste relatório prosseguiu-se ao fracionamento das sub-frações metanólicas (EM10, 11 e 14), oriundas da fração EM3 (Esquema 1), e iniciou-se a separação dos componentes da fração Acetato de Etila (Esquema 2). Nesta segunda fase foram isolados e identificados sete compostos, sendo que dois (Genin D e Tellimagrandin I) já haviam sido isolados e identificados nas frações anteriores (Fortes e Santos, 2009; Fortes *et al.*, 2010).

4.2 Caracterização espectroscópica dos taninos isolados

4.2.1 2,3,6-Tri-O-galoil-β-glicose

O galoil éster 2,3,6-Tri-O-galoil- β -glicose foi obtido na fração EAE22 (30 mg), sua estrutura foi determinada através de seus espectros de RMN H¹, COSY e HMQC. Este galoil éster já foi isolado das espécies *Quercus coccifera* e *Quercus suber* (Ito *et al.*, 2002).

O 2,3,6-Tri-O-galoil- β -glicose existe como uma mistura de anômeros $\alpha \in \beta$, pois ele é um hemiacetal, sua hidroxila no C-1 não está esterificada, com isso seu espectro de RMN H¹ é relativamente complexo (Figura 1). Os sinais de prótons e carbonos foram identificados através dos espectros de COSY e HMQC (Tabela 1).

Figura 1. Espectro de RMN H¹ do galoil éster 2,3,6-Tri-O-galoil-β-glicose.

Tabela 1.	2 3 6-Tri-O-	galoil-B-glicose	- dados de	RMN H ¹	$e C^{13}$
Lancia 1.	2,5,0-111-0-	galon-p-gheose	- uauos u		

	δH^1		δ C ¹³	
C/H	lpha anômero	eta anômero	α anômero	β anômero
1	5,52 d (4)	5,06 d (8)	90,10	95,94
2	4,96 dd (4; 10)	5,16 dd (8; 9,3)	73,21	74,03
3	5,80 t (9,7)	5,48 t (9,3)	73,53	76,16
4	3,97 t (9,5)	3,93 m	75,20	74,85
5	4,35 ddd (2; 5; 11)	4,45 m	70,33	68,20
6	4,60 dd (2; 12)	4,64 d (12)	63,95	64,10
6	4,51 dd (5; 12)	4,48 m	-	-
Galoil 2' e 6'	7,08s; 7,12s; 7,19s	7,06s; 7,06s; 7,14s	109	9,89

Espectro realizado em acetona-d₆. (Constantes de acoplamento em Hz)

4.2.2 Genin D

O elagitanino Genin D (3-*O*-galoil-4,6-*O*-(s)-hexahidroxidi-fenoil-glicose) foi obtido nas frações EM123 (0,11 g) e EM169 (16 mg), sua estrutura foi determinada através de

seus espectros de RMN H¹, COSY e HMQC e comparação com dados da literatura (Yoshida *et al.*, 1985). Este elagitanino foi isolado pela primeira vez da espécie *Geum japonicum* e está presente em várias outras espécies que contem taninos hidrolisáveis (Okuda *et al.*, 1993). O Genin D também existe como uma mistura de anômeros $\alpha \in \beta$, pois sua hidroxila no C-1 não está esterificada, o que torna seu espectro de RMN H¹ relativamente complexo (Figura 2). Dados de prótons e carbonos se encontram na Tabela 2.

Figura 2. Espectro de RMN H¹ do elagitanino Genin D

	δH^1		δ C ¹³	
C/H	α anômero	β anômero	lpha anômero	β anômero
1	5,26 d (4)	4,73 d (8)	93,5	98,5
2	3,81 dd (4; 9)	3,57 m	71,6	74,0
3	5,48 t (9)	5,30 t (10)	74,2	75,7
4	4,93 t (10)	4,96 t (10)	71,0	71,0
5	4,54 dd (6;10)	4,07 dd (6;10)	66,9	71,5
6	5,20 dd (6; 13)	5,22 dd (6; 13)	63,5	63,5
6	3,73 d (13)	3,79 d (13)	-	-
Galoil 2' e 6'	7,02s	7,01s	109,8	
HHDF 2' e 6'	6,46s, 6,61s	6,45s, 6,62s	107,6; 107,7	

Tabela 2. Genin D - dados de RMN H¹ e C¹³

Espectro realizado em acetona- d_6 + D_2O . (Constantes de acoplamento em Hz)

4.2.3 Isocoriariin F

O elagitanino Isocoriariin F (3-*O*-galoil-4,6-*O*-(s)-valenoil-glicose) foi obtido na fração EM172 (9 mg), sua estrutura foi determinada através de seus espectros de RMN H¹, COSY, HMQC e HMBC e comparação com dados da literatura (Hatano *et al.*, 1989). Os

sinais de prótons e carbonos dos anômeros α e β se encontram na Tabela 3. Este elagitanino foi isolado pela primeira vez da espécie *Coriaria japonica* e está presente em frutos de *Eucalyptus maideni* (Tian *et al.*, 2010).

Figura 3. Espectro de RMN H¹ do elagitanino Isocoriariin F

	δH^1		δ C ¹³	
C/H	α anômero	eta anômero	α anômero	β anômero
1	5,19 d (4)	4,68 d (8)	93,10	97,80
2	3,75 dd (4; 10)	3,51 dd (8; 9,5)	71,00	73,61
3	5,24 t (10)	5,05 t (10)	73,70	75,33
4	4,78 t (10)	4,81 t (10)	71,10	71,12
5	4,42 m	3,98 m	66,52	71,10
6	5,07 dd (6; 13)	5,10 dd (6; 13)	63,61	63,61
6	3,69 dd (2; 13)	3,77 dd (2; 13)	-	-
Galoil 2' e 6'	6,92s	6,92s	110,50	
Valoneoil A, B e C	6,57s, 6,22s, 7,12s	6,58s; 6,19s; 7,14s	107,69; 105	,49; 109,97

Tabela 3. Isocoriariin F - dados de RMN H¹ e C¹³

Espectro realizado em acetona-d₆. (Constantes de acoplamento em Hz)

4.2.4 Tellimagrandina I

O elagitanino Tellimagrandina I (2,3-di-*O*-galoil-4,6-*O*-(s)-hexahidroxidi-fenoilglicose) foi obtido nas frações EM179 (12 mg) e EAE24 (89 mg), sua estrutura foi determinada através de seus espectros de RMN H¹, COSY e HMQC e comparação com dados da literatura (Hatano *et al.*, 1988). Esse composto também é uma mistura de anômeros α e β , como ser visto no seu espectro de RMN H¹ (Figura 4). Os sinais de prótons e carbonos são mostrados na Tabela 4. Este elagitanino foi isolado pela primeira vez da espécie *Tellima* *grandiflora* e está presente em várias outras espécies que contem taninos hidrolisáveis (Okuda *et al.*, 1993).

Figura 4. Espectro de RMN H¹ do elagitanino Tellimagrandina I

	δH^1		δ C ¹³	
C/H	α anômero	eta anômero	lpha anômero	β anômero
1	5,55 d (4)	5,08 d (8)	91,44	96,97
2	5,11 dd (4; 10)	5,25 dd (8;10)	73,13	74,36
3	5,86 t (10)	5,59 t (10)	71,33	73,68
4	5,12 t (10)	5,12 t (10)	71,25	71,28
5	4,66 ddd (1;6;10)	4,26 ddd (1;6;10)	67,44	72,23
6	5,26 dd (6; 13)	5,26 dd (6; 13)	63,65	63,65
6	3,79 dd (1; 13)	3,87 dd (1; 13)	-	-
Galoil 2' e 6'	7,00s, 7,06s	6,95s, 7,05s	110	
HHDF 2' e 6'	6,48s, 6,65s	6,50s, 6,66s	107,9, 108,3	

Tabela 4. Tellimagrandina I - dados de RMN H¹ e C¹³

Espectro realizado em acetona-d₆. (Constantes de acoplamento em Hz)

4.2.5 Penta-O-galoil-β-glicose

O galoil éster Penta-O-galoil- β -glicose foi obtido na fração EAE35 (15 mg), sua estrutura foi determinada através de seus espectros de RMN H¹, COSY e HMQC e comparação com dados da literatura (Beretta et al., 2010). Este galoil éster está presente em várias outras espécies que contem taninos hidrolisáveis (Okuda *et al.*, 1993).

O Penta-O-galoil- β -glicose é um acetal e existe apenas como o anômero β , o que simplifica bastante seu espectro de RMN H¹ (Figura 5). Os sinais de prótons e carbonos foram identificados através dos espectros de COSY e HMQC (Tabela 5).

Figura 5. Espectro de RMN H^1 do galoil éster Penta-O-galoil- β -glicose

C/H	δH^1	δ C ¹³
1	6,32 d (8,3)	93,4
2	5,62 dd (8; 9,7)	71,9
3	6,01 t (9,7)	73,5
4	5,68 t (10)	69,5
5	4,55 m	74,1
6	4,58 dd (2; 13)	62,9
6	4,30 dd (5,3; 13)	-
Galoil 2' e 6'	7,02s; 7,04s; 7,09s; 7,11s; 7,18s	109,98

Tabela 5. Penta-O-galoil- β -glicose - dados de RMN H¹ e C¹³

Espectro realizado em acetona-d₆. (Constantes de acoplamento em Hz)

4.2.6 Tellimagrandina II

O elagitanino Tellimagrandina II (1,2,3-Tri-*O*-galoil-4,6-*O*-(s)-hexahidroxi-difenoil-glicose) foi obtido na fração EAE36 (22 mg), sua estrutura foi determinada através de seus espectros de RMN H¹, COSY e HMQC e comparação com dados da literatura (Wilkins e Bohm, 1976). Esse composto também é um acetal e apresenta apenas o anômero β , como pode ser visto no seu espectro de RMN H¹ (Figura 6). Os sinais de prótons e carbonos são mostrados na Tabela 6. Este elagitanino foi isolado pela primeira vez da espécie *Tellima grandiflora* e está presente em várias outras espécies que contem taninos hidrolisáveis (Okuda *et al.*, 1993).

Figura 6. Espectro de RMN H¹ do elagitanino Tellimagrandina II

C/H	$\delta \mathrm{H}^1$	δ C ¹³
1	6,17 d (8,3)	93,4
2	5,60 dd (8,3; 9,7)	71,5
3	5,81 t (9,7)	73,0
4	5,20 t (9,9)	70,5
5	4,52 dd (6,8; 10)	72,7
6	5,31 dd (6,4; 13,2)	62,8
6	3,88 dd (13,2)	-
Galoil 2' e 6'	6,96s; 6,99s; 7,09s	110,0
HHDF 2' e 6'	6,49s; 6,63s	107,6; 107,8

Tabela 6. Tellimagrandina II - dados de RMN $H^1 e C^{13}$

Espectro realizado em acetona-d₆. (Constantes de acoplamento em Hz)

4.2.7 Woodfordin 1

O elagitanino dimérico Woodfordin 1 foi obtido nas frações EM131, 132 e 133 (massa total 146 mg), sua estrutura foi deteminada através de seus espectros de RMN de H¹, COSY, HMQC e HMBC e por comparação com dados da literatura (Yoshida *et al.*, 1992b). Este elagitanino foi isolado pela primeira vez de flores da espécie *Woodfordia fruticosa* Kurz (Lythraceae) (Yoshida *et al.*, 1992b).

O elagitanino Woodfordin 1 é um dímero macrocíclico tal como Oenotheina B isolado anteriormente de outras frações metanólicas de *E. microcorys* (Fortes e Santos, 2009; Fortes *et al.*, 2010). Apesar das duas glicoses estarem na forma de hemiacetais, este dímero não existe como uma mistura de $\alpha \in \beta$ anômeros, devido à rigidez de sua estrutura que favorece apenas um dos anômeros em cada unidade. Esta rigidez também é a causa do

espectro de RMN H¹ apresentar alguns sinais alargados, pois a estrutura macrocíclica dificulta a rotação livre das ligações (Figura 7).

Figura 7. Espectro de RMN H¹ do elagitanino Woodfordin 1

Os dados de prótons e carbonos se encontram na Tabela 7 e foram obtidos por comparação com dados da literatura (Yoshida *et al.*, 1992b).

	Glicose a		Glicose	β
C/H	δH^1	δC^{13}	δH^1	δC^{13}
1	6,20 largo	91,0	4,49 d (8)	95,5
2	6,02 dd (3,3; 8)	74,5	5,20 dd (8,2; 9,4)	74,5
3	6,06 largo	71,1	5,38 t (9,7)	73,0
4	5,68 t (9,8)	73,4	4,90 t (8,8)	73,4
5	4,56 dd (6,7; 10)	68,3	4,17 dd (5,3; 10)	71,7
6	5,22 dd (6,5; 13)	63,1	5,03 dd (7; 13)	63,7
6	3,62 d (13)	-	3,74 d (13)	-
Anel A e A'	6,42 s	107,4	6,59 s	107,0
Anel B e B'	6,29 largo	105,5	6,42 s	105,5
Anel C e C'	6,71 largo	108,6	7,19 s	110,1
Anel D'	-		7,14 largo	114,2
Anel G e G'	7,22 s	110,4	6,99 largo	110,0

Tabela 7. Woodfordin 1 - dados de RMN $H^1 e C^{13}$

Espectro realizado em acetona- d_6 + D_2O . (Constantes de acoplamento em Hz)

5 CONCLUSÕES

Neste trabalho foi possível o isolamento e identificação de sete compostos fenólicos, sendo cinco elagitaninos e dois galoil ésteres. Esses compostos, além de outros que serão purificados de outras frações, serão utilizados para um estudo mais detalhado da sazonalidade desta planta. Com isso visamos estudar a biossíntese destes compostos fenólicos e sua correlação com fatores ambientais.

REFERÊNCIAS

Beretta, G.; Artali, R.; Caneva, E.; Facino, R. M. Conformation of the tridimensional structure of 1,2,3,4,6-pentagalloyl- β -D-glucopyranose (PGG) by 1H NMR, NOESY and theoretical study and membrane interaction in a simulated phospholipid bilayer: a first insight. *Magn. Reson. Chem.*, 49, 132–136, 2011.

Estanislau, A.A.; barros, F.A.S.; Pena, A.P.; Santos, S.C.; Ferri, P.H.; Paula, J.R. Composição química e atividade antibacteriana dos óleos essenciais de cinco espécies de *Eucalyptus* cultivadas em Goiás. *Rev. Bras. Farmacognosia* 11, 95-100, 2001.

Foudil-Cherif, Y.; Meklati, B.Y.; Verzera, A.; Mondello, L.; Dugo, G. Chemical examination of essential oils from the leaves of nine Eucalyptus species growing in Algeria. *J. Essential Oil Res.* 12,186-191, 2000.

Fortes, G. A. C., Godoi, F. F. F., Santos, S. C. Polifenóis isolados de folhas de Eucalyptus microcorys In: 33° Reunião Anual da Sociedade Brasileira de Química, 2010, Águas de Lindóia - SP. Anais da 33° Reunião da Sociedade Brasileira de Química, QPN 0012, 2010.

Fortes, G. A. C., Santos, S. C., Taninos hidrolisáveis de folhas de *Eucalyptus microcorys*, VI Congresso de Pesquisa Ensino e Extensão, Goiânia, Anais do VI Congresso de Pesquisa Ensino e Extensão, p. 2846-2859, 2009.

Hatano, T.; Yoshida, T.; Shingu, T.; Okuda, T. ¹³C Nuclear Magnetic Ressonance Spectra of Hydrolysable Tannins. II. Tannins forming anomer mixtures. *Chem. Pharm. Bull.* 36, 2925-2933, 1988.

Hatano, T.; Ogawa, N.; Kira, R.; Yasuhara, T.; Okuda, T. Tannins of Cornaceous plants. I. Cornusiins A, B and C, dimeric, monomeric and trimeric hydrolysable tannins from *Cornus officinalis*, and orientation of valoneoyl group in related tannins. *Chem. Pharm. Bull.* 37, 2083-2090, 1989.

Ito, H; Yamaguchi, K; Kim, T-H; Khennouf, S; Gharzouli, K; Yoshida, T. Dimeric and trimeric hydrolyzable tannins from *Quercus coccifera* and *Quercus suber. J. Natural Prod.* 65(3), 339-345, 2002.

Lee, M. H.; Nishimoto, S.; Yang, L. L.; Yen, K.Y.; Hatano, T.; Yoshida, T.; Okuda, T. Two macrocyclic hydrolysable tannin dimers from *Eugenia uniflora*. *Phytochemistry* 44, 1343-1349, 1997.

Moore, B.D.; Wallis, I.R.; Wood, J.T.; Foley, W.J. Foliar nutrition, site quality, and temperature influence foliar chemistry of Tallowwood (Eucalyptus microcorys). *Ecol. Monogr.* 74, 553-568, 2004.

Okuda, T.; Yoshida, T.; Hatano, T. Ellagitannins as active constituints of medicinal plants. *Planta Medica* 55, 117-122,1989a.

Okuda, T.; Yoshida, T.; Hatano, T. New methods of analyzing tannins. J. Natural Prod. 52, 1-31, 1989b.

Okuda, T.; Yoshida, T.; Hatano, T. Classification of oligomeric hydrolysable tannins and specificity of their occurrence in plants. *Phytochemistry* 32(3), 507-521, 1993.

Santos, S.C; Waterman, P.G. Polyphenols from *Eucalyptus consideriana* and *Eucalyptus viminalis*. *Fitoterapia* 72, 95-97, 2001.

Souza, L.S.; Ferri, P.H.; Santos, S.C. Variação sazonal de fenóis e nutrientes em folhas de *Eucalyptus microcorys*, Anais do XLVII Congresso Brasileiro de Química, IC-277, 2007.

Tian, L.-W., Yang, C.-R., Zhang, Y.-J. Phenolic compounds from the fresh leaves of *Eucalyptus* maideni. Helv. Chim. Acta 93 (11), p. 2194-2202, 2010.

Wilkins, C.K.; Bohm, B.A. Ellagitannins from *Tellima grandiflora*. *Phytochemistry* 15, 211-214, 1976.

Yoshida, T; Maruyama, Y; Memon, MU, Shingu, T.; Okuda, T. Gemins D, E and F, ellagitannins from *Geum japonicum*. *Phytochemistry* 24(5), 1041-104, 1985.

Yoshida, T.; Maruyama, T.; Nitta, A.; Okuda, T. Eucalbanin-A, Eucalbanin-B and Eucalbanin-C, monomeric and dimeric hydrolysable tannins from *Eucalyptus alba* Reinw. *Chem. Pharm. Bull.* 40, 1750-1754, 1992a.

Yoshida, T.; Chou, T.; Nitta, A.; Okuda, T. Tannins and related polyphenols of Lythraceous plants. III. Hydrolysable tannins oligomers with macrocyclic structures, and accompanying tannins from *Woodfordia fruticosa* Kurz. *Chem. Pharm. Bull.* 40, 2023-2030, 1992b.