Avaliação dos Parâmetros de Projeto de Medidores de Vazão Tipo Venturi Utilizando Fluidodinâmica Computacional.

Meline Gabriele de Paula Santos¹, Rodrigo Béttega²

- 1. Estudante de IC da Universidade Federal de São Carlos UFSCar; *melinegabriele@hotmail.com
- 2. Professor do Departamento de Engenharia Química da Universidade Federal de São Carlos UFSCar

Palavras Chave: Venturi, CFD, Fluidodinâmica

Introdução

O Tubo de Venturi é um componente amplamente utilizado para medir vazão da fluidos escoando em tubulações. Na figura a seguir é ilustrado o equipamento:

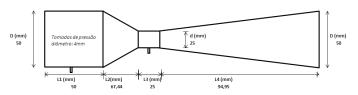


Figura 1 - Tubo de venturi

Conhecer sua geometria ideal é essencial para sua correta aplicação de acordo com as especificidades do projeto. Neste trabalho objetivou-se, a partir de simulações de escoamento utilizando CFD, a avaliação da variação de parâmetros geométricos clássicos do tubo de Venturi buscando otimizar a perda de carga no equipamento.

Resultados e Discussão

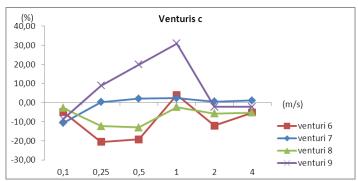

Utilizando o software Fluent 14.0 realizaram-se simulações de escoamento em modelos de tubos de venturi que sofreram variações de ± 10 e 20% no ângulos divergente e/ou convergente, para seis velocidades diferentes. Na comparação entre tubos de venturi que sofreram modificações apenas em seu ângulo convergente, pode-se observar que os que tiveram acréscimos tem resultados expressivamente melhores em relação àqueles que tiveram decréscimos, tanto para baixas quanto para altas vazões. Quando essa mesma comparação é feita entre os venturis divergentes, o que teve o ângulo divergente diminuído em 20% apresentou os melhores resultados. Além disso, apenas o modelo que teve o ângulo divergente aumentado em 10% não teve bons resultados para baixas vazões.

Tabela 1. Parâmetros do modelo.

Turbulência:	Standard k-e
Fluido:	Ar - densidade: 1,0 kg/m³
	viscosidade: 2,09 e-05 kg/m-s
Velocidade:	1,0 m/s (entrada)
	Pressão: standard
Solution	Momento: Second O.U.
Methods:	Turbulent Kinetic Energy: First O.U.
	Turbulent Dissipation Rate: First O.U.
Solution	Hybrid
Initialization:	Tiyblia
Iterações:	1000

Nas figuras 2 e 3 são apresentados os resultados de queda de pressão total no sistema para diferentes venturis

avaliados. É possível verificar que a alterações na geometria promovem diferenças significativas na perda de carga com base na configuração original.

Figura 2. Percentual de desvio da queda de pressão quando houve variação no ângulo convergente.

Figura 3. Percentual de desvio da queda de pressão quando houve variação no ângulo divergente.

Conclusões

Os resultados indicaram que apenas o ângulo divergente deve ser diminuído para atingir quedas de pressão menores. Por outro lado, o aumento de ângulos, tanto convergente quanto divergente mostrou-se, na maioria dos casos, uma boa alternativa.

Agradecimentos

Os autores agradecem ao CNPq pela concessão de bolsa por intermédio do programa Jovens Talentos para Ciência.