Propriedades ópticas de Aluminato de Estrôncio dopado com Érbio e Neodímio

Camila I. P. dos Santos^{1*}, Leonilson K.S. de Herval¹, M. Ayvacikli², Yara G. Gobato¹, N. Can^{2,3}, M. Henini⁴, Marcio P.F. de Godov¹

- 1. Departamento de Física, Universidade Federal de São Carlos UFSCar, São Carlos/SP; *caianhez@gmail.com
- 2. Department of Physics, Faculty of Arts and Sciences, Celal Bayar University Muradiye Manisa, Turkey
- 3. Physics Department, Jazan University Kingdom of Saudi Arabia
- 4. School of Physics and Astronomy, Nottingham Nanotechnology and Nanoscience Centre, University of Nottingham UK

Palavras Chave: aluminato de estrôncio, fotoluminescência, infravermelho

Introdução

A necessidade de atender à crescente demanda em tecnologias de comunicação leva as redes de telecomunicações serem atualizadas periodicamente. Atualmente as linhas de fibras ópticas possuem muitas características capazes de melhorar a qualidade da transmissão de informação, mostrando-se de extrema importância o estudo de seus componentes. Uma forte motivação é a transmissão de dados na região óptica do infravermelho, que é a faixa de menor atenuação dos sinais transmitidos através das fibras.

O aluminato de estrôncio (SrAl₂O₄) é uma matriz promissora para sistemas dopados com Érbio(Er) e Neodímio(Nd), que possuem emissões na faixa do infravermelho. Devido à sua transparência nas emissões ópticas, a boa estabilidade química e a longa duração de sua fosforescência, o SrAl₂O₄ permite a produção de diversos dispositivos para ambientes escuros.

Nesse trabalho foram estudadas duas amostras de SrAl₂O₄ codopadas com Manganês(Mn): a) Mn-Er e b) Mn-Nd através de espectroscopia de fotoluminescência (PL).

Resultados e Discussão

As amostras foram produzidas a partir da síntese de materiais usando o método convencional da reação de estado sólido. As concentrações nominais de dopantes nas amostras foram 1.0%mol de Mn e 0.8%mol de Er e Nd.

Foram realizadas medidas de fotoluminescência empregando como fonte de excitação as linhas 325nm e 442nm de um laser de HeCd e/ou a linha 532nm de um diodo laser. A resposta óptica foi analisada em um espectrômetro Triax de Jobin-Yvon acoplado a um detector de Germânio. A ilustração geral do experimento está representada na Figura 1.

A amostra dopada com Er apresenta as emissões devido à transição óptica entre os níveis $I_{13/2}$ - $I_{15/2}$, além das transições $S_{3/2}$ - $I_{9/2}$ e $H_{11/2}$ - $I_{9/2}$. Estas emissões localizam-se na região do infravermelho em 1,5 μ m, associadas à banda-C em comunicações via fibra óptica.

A amostra dopada com Nd apresenta as emissões entre os níveis $F_{3/2}$ - $I_{13/2}$, que estão em torno de 1,3µm e $F_{3/2}$ - $I_{11/2}$, em 1,05 µm. Os gráficos com a Intensidade luminosa em função do comprimento de onda obtidos para as duas amostras estão representados na Figura 2.

Foram estudadas também, para as mesmas amostras, a emissão óptica em função da temperatura em um intervalo de 10 a 300K.

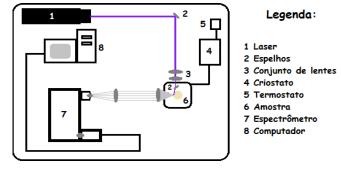


Figura 1. Modelagem Experimental

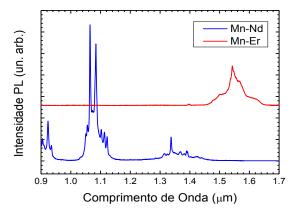


Figura 2. Gráficos das amostras dopadas com Er e Nd

Conclusões

As amostras produzidas apresentam boa diluição dos íons Terras-Raras e consequentemente exibem as emissões intra-atômicas características dos íons Érbio e Neodímio. Estas emissões estão localizadas na região de baixa atenuação de sinais em fibras ópticas.

A queda na intensidade das emissões ópticas e mudanças na posição dos picos de emissão são estudadas em uma larga faixa de temperaturas.

Agradecimentos

Os autores gostariam de agradecer à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro.