Avaliação da cinética de adsorção de paracetamol em carvão ativado

Juliana F. da Silva^{1*}, Carla F.S. Rombaldo², Aparecido R. Coutinho², Manoel O.A Méndez^{2*}

- 1. Estudante de IC da Universidade Metodista de Piracicaba- UNIMEP; *jfloriano@unimep.br
- 2. Prof. da Universidade Metodista de Piracicaba, UNIMEP, Santa Bárbara d'Oeste/SP

Palavras Chave: adsorção, paracetamol e cinética.

Introdução

A detecção de resíduos fármacos em recursos hídricos é preocupante devido ao impacto ambiental e aos possíveis prejuízos à saúde humana.

Os processos convencionais de tratamento de água e efluentes são incapazes de eliminar completamente esses compostos, logo é necessário introduzir tecnologias avançadas adicionais de tratamento, como a adsorção em carvão ativado (TAMBOSI, 2008).

Na engenharia química, adsorção é uma operação unitária que envolve o contato entre um sólido e um fluido, originando uma transferência de massa de um componente presente na fase fluida para a superfície do sólido (FOUST, 1982).

Neste sentido o presente trabalho visa realizar o estudo experimental da cinética de adsorção de paracetamol em carvões ativados comerciais. Foram testados dois modelos cinéticos, um de primeira ordem e um de segunda ordem.

A equação de velocidade de adsorção de primeira ordem proposta por Lagergren descreve a taxa de adsorção com base na capacidade de adsorção (HO, 2006). Esta equação na forma linear é apresentada na equação 01.

$$\log(q_e - q_t) = \log q_e - \frac{k}{2,303}t \tag{01}$$

Em que: q_e e q_t (mg/g) são as capacidades de adsorção em equilíbrio e em um momento t qualquer, respectivamente. K é a constante de velocidade de adsorção de primeira ordem, em min⁻¹, e t é o tempo em minutos.

O modelo de cinética de adsorção de segunda ordem na forma linear é:

$$\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{t}{q_e} \tag{02}$$

Em que: K_2 é a constante cinética de velocidade de segunda ordem, e os demais termos são os mesmos para o modelo de primeira ordem (RODRIGUES *et al*, 2011).

Resultados e Discussão

A cinética de adsorção de paracetamol foi avaliada com carvões ativados comerciais da Carbomafra, Calgon e Norit em diferentes quantidades.

Para o modelo cinético de segunda ordem o gráfico de t/q versus tempo deve apresentar comportamento linear. Os dados experimentais obtidos para todos os carvões e todas as massas, ajustaram a este modelo em praticamente todo intervalo de tempo. Para o modelo cinético de primeira ordem os dados experimentais não obtiveram bom ajuste.

A tabela 1 apresenta os valores das constantes cinéticas de segunda ordem, a quantidade adsorvida no

equilíbrio por massa de carvão ativado, e os coeficientes de correlação (R²), para os experimentos realizados utilizando-se carvões ativados comerciais.

Tabela 1. Valores ajustados para modelo cinético de 2º ordem

Carvão	Massa (g)	K ₂ x10 ⁷ (g/μg. min)	q _e (µg/g)	R ²
Carbomafra	0,5	4,337	23627,6	0,9992
	0,35	2,624	27254,8	0,9998
	0,25	1,718	39658,5	0,9998
Calgon	0,5	6,933	22985,5	0,9994
	0,35	2,867	29904,7	0,9999
	0,25	1,883	38144,9	0,9998
Norit	0,5	2,854	18683,8	0,9998
	0,35	1,187	24712,4	0,9990

Observa-se que a adsorção de paracetamol para os carvões ativados comerciais, apresentam elevada correlação dos dados com o modelo de cinética de segunda ordem, pois os valores de R2 obtidos são próximos a unidade. Isto indica que o mecanismo de adsorção destes carvões apresentam um comportamento cinético em que aumentos na quantidade de adsorbato na solução resultam em aumentos quadráticos na velocidade de adsorção. Nota-se que quanto maior a quantidade de carvão ativado comercial da Carbomafra, maior é o valor da constante cinética de segunda ordem, expressando a coerência dos resultados obtidos, pois se espera que quanto maior a quantidade de carvão ativado utilizada mais rapidamente ocorra à adsorção de paracetamol, devido à maior concentração de sítios de adsorção disponível.

Conclusões

Analisando-se os valores das constantes cinéticas verifica-se que o carvão ativado da Calgon é o que possui cinética de adsorção mais rápida e maior capacidade de adsorção em relação aos demais, enquanto o carvão ativado da Norit possui a cinética de adsorção mais lenta e menor capacidade de adsorção.

Agradecimentos

Agradeço ao CNPq pelo fornecimento da bolsa PIBIC e ao meu orientador Manoel Orlando Alvarez Méndez.

HO, Yuh-shan. Review of second-order models for adsorption systems. **Journal of Hazardous Materials**, Taiwan, v. 136, n. 3, p.681-689, ago. 2006.

RODRIGUES, L. A. *et al.* Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. **Chem. Eng. Journal**, UK, v. 174, n. 1, p.49-57, 15 out. 2011.

TAMBOSI, J.L. Remoção de fármacos e avaliação de seus produtos de degradação através de tecnologias avançadas de tratamento. 2008. 141 f. (Programa de Pós-Graduação em Eng.Química). Depto. de Eng. Química e Eng. de Alimentos, Universidade Federal de Santa Catarina, 2008.

ROUQUEROL, J. et al. Recommendations for the characterization of porous solids. **Pure And Applied Chem.**, UK, v. 66, n. 8, p.1739-1758, 1994.