Porta Ferramentas Intercambiável

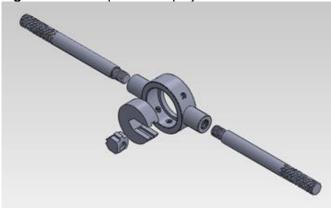
Thallyta Rebeca Ladislau Santos¹, Anderson Luiz de Oliveira Paiva²

- 1. Estudante do Serviço Nacional de Aprendizagem Industrial de Pernambuco-SENAI, Cabo/PE;* thallytaladislau@gmail.com
- 2. Docente em Eletromecânica do Serviço Nacional de Aprendizagem Industrial, SENAI, Cabo/PE.

Palavras Chave: Ferramenta, Desandador, Intercambiável.

Introdução

Durante o processo de fabricação de roscas internas e externas nas disciplinas práticas do curso técnico de eletromecânica, foi detectada a necessidade de efetuar constantes trocas de desandadores durante a execução de roscas nos furos e nos parafusos. Esse processo exigia do professor e do aluno uma troca mais demorada. Foi observado que essa atividade poderia torna-se mais versátil, assim criamos um projeto de uma única ferramenta para as duas finalidades, o qual tornou os processos práticos das aulas mais dinâmico e apresentou um processo de inovação industrial.


Resultados e Discussão

ferramentas projeto consiste em um porta intercambiável que é usado para imprimir movimentos giratórios a machos, cossinetes e alargadores. Existem alguns tipos de porta-ferramentas, são os chamados desandadores onde uns são apropriados para movimentar machos e alargadores e outros para movimentar cossinetes, o diferencial do projeto é a utilização de um único desandador para movimentar machos, alargadores e cossinetes. Isso é possível com a fabricação de uma luva com um furo retangular, ou seja, em vez de fixar um cossinete no desandador, a luva é fixada permitindo a utilização de machos e alargadores.

O porta ferramentas intercambiável é formado por um corpo central, onde é fixado o cossinete ou a luva para fixar alargadores e machos, roscadas a este corpo central há duas hastes recartilhadas em uma das extremidade responsáveis pelo apoio das mãos do operador para movimentar o conjunto.

A aposta principal do dispositivo é a praticidade, facilitando a utilização, a troca de ferramenta em uma nova operação. Também reduzir custos de aquisição e fabricação, pois, não é preciso mais de uma ferramenta, impactando também na redução de espaço para armazenamento.

Figura 1. Vista explodida do projeto.

Conclusões

Este projeto apresenta uma ótima viabilidade haja vista que um único suporte é utilizado para várias ferramentas, o equipamento não gera ruídos, não possui consumo de energia, pois trata-se de uma ferramenta manual e quando utilizado corretamente não produzira complicações ergonômicas. O projeto é aplicado em operações de ajustagem manual de confecção de roscas e alargamento, por isso, pode ser utilizado em oficinas, laboratórios de escolas técnicas, serralherias, tubulações residenciais, industriais ou automotivas e outros setores que necessitem da utilização da ferramenta.

Agradecimentos

Agradecemos a Deus pela capacidade concedida para chegarmos até aqui. Ao SENAI PE pelo incentivo ao desenvolvimento de projetos e inovação. Em especial agradecemos a todos os envolvidos com o projeto: Adson Campelo, Andrelle Almeida, Áxel Costa, Frederico Cezar, Isnaldo Santos, João Felipe Neto, Lucas Santos, Luciano Santos, Sebastião Alves.

BEHAR, Maxim (org.). **Manual prático de máquinas e ferramentas**. SãoPaulo: Hemus, 2005.

CAMPOS, Vicente F. TQC: controle da qualidade total (no estilo japonês). 6.ed. Belo Horizonte: UFMG, 1992.

GIL, Antonio Carlos. **Como elaborar projetos de pesquisa**. 5. ed. São Paulo: Atlas, 2010.