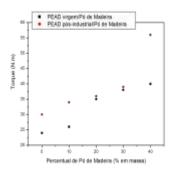
# PREPARAÇÃO E CARACTERIZAÇÃO DE RESÍDUO PÓS-INDUSTRIAL DE MADEIRA PLÁSTICA REFORÇADOS COM RESÍDUOS DE PÓ DE MADEIRA

## Wallace F. P. de Paula<sup>1</sup>, Luciana P. da Silva<sup>2</sup>

- 1. Estudante de IC da Universidade Estadual da Zona Oeste UEZO; \* wallacefernando@hotmail.com; e
- 2. Orientadora do Curso de Tecnologia em Polímeros da Universidade Estadual da Zona Oeste UEZO Palavras Chave: Madeira plástica, Resíduo de madeira, Polietileno de alta densidade.


# Introdução

Os resíduos poliméricos quando descartados em lugares inadequados, como lixões, rios, encostas, etc., causam um impacto negativo ao meio ambiente. Neste contexto, uma alternativa inteligente e ecologicamente correta para a problemática do descarte inadequado é a reutilização de resíduos pós-industriais a base de Polietileno de Alta Densidade (PEAD) e Resíduos de Pó de Madeira (RPM) na formulação de compósitos com propriedades importantes. Através da parceria da Universidade Estadual da Zona Oeste (UEZO) com a Companhia Municipal de Limpeza Urbana (COMLURB) foi possível viabilizar o projeto de pesquisa usando materiais 100% reciclados, sem aditivos, visando confirmar e eficiência de compósitos de madeira plástica com propriedades satisfatórias e ecologicamente corretas.

### Resultados e Discussão

Os Resíduos de Madeira Plástica (RMP) e Resíduos de Pó de Madeira (RPM) coletados da COMLURB e da empresa moveleira MARISOL - Campo Grande, respectivamente e beneficiados através de secagem, imantação e separação. Ambos materiais provenientes das sobras de corte, geralmente esses materiais são descartados. Após o beneficiamento, foram preparadas com diferentes percentuais (em massa) de RPM (0, 10, 20, 30 e 40%) com RMP, nas mesmas proporções à título de comparação foram misturados Polietileno de Alta Densidade (PEAD) virgem com RMP. Foi utilizada extrusora dupla-rosca TeckTrill DCT 40, com L/D: 40 e dez zonas de temperatura (mais a zona do cabeçote), compreendidas entre 135 e 220°C, com velocidade de processamento de 60 rpm e velocidade de alimentação para dosagem do material na extrusora de 6 rpm.

Os perfis obtidos na extrusora foram analisados por torque, densidade, dureza, índice de fluidez. Conforme a Figura 1, os resultados de torque mostraram aumento considerável com o aumento do percentual de pó de madeira para todas as composições. O mesmo foi observado para os valores de dureza, mostrando materiais mais rígidos (Figura 2).



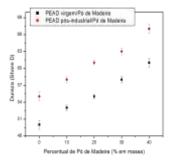
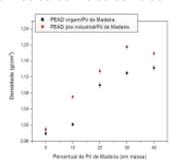




Figura 1:Resultados do torque máximo

Figura 2: Resultados dos testes de dureza

A Figura 3 mostra os valores de densidade que também aumentam com o acréscimo do teor de pó de madeira nos compósitos. Nos testes de fluidez (Figura 4), os compósitos de PEAD virgem/RPM apresentaram redução no índice de fluidez com o aumento no teor de carga, pois o aumento desta carga na matriz promoveu aumento de viscosidade dos sistemas. Esta tendência não foi observada para os compósitos de RMP/RPM, devido provavelmente a presença de aditivos no RMP que mantém constante as viscosidades do sistema, inalterando a medida de índice de fluidez.



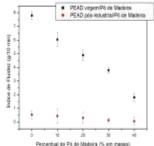



Figura 3: Resultados dos testes de densidade

Figura 4: Resultados dos testes de Fluidez

#### Conclusões

Os resultados indicaram que o resíduo de pó de madeira tende a aumentar a viscosidade do compósito com crescimento linear, assim como os resultados com os ensaios de dureza mostraram um aumento constante em todas as amostras. A densidade também foi aumentada de modo considerável em todas as proporções. De acordo com os resultados de densidade e de dureza, conclui-se que o pó de madeira atuou como carga reforço e carga de preenchimento.

Deste modo, os resultados mostraram que é perfeitamente viável a produção de compósitos com resíduos de madeira plástica e pó de madeira com melhoria de propriedades. Com isto, pode-se concluir que o presente trabalho contribui para o meio ambiente, uma vez que promove a produção de materiais ecologicamente corretos.

- CORREA, C.A. et al Compósitos termoplásticos com madeira. Polímeros: Ciência e Tecnologia, vol. 13,n°3, p. 154-165, 2003.
- CRUZ, S. A. et al. Propriedades reológicas de blendas de PEAD virgem/PEAD reciclado. Polímeros: Ciência e Tecnologia, vol. 18, nº 2, p. 144-151, 2008.
- FONSECA, F. M. C., Desenvolvimento e caracterização de compósitos à base de polietileno de alta densidade (PEAD) reciclado e fibras vegetais.
  Dissertação de Mestrado Rede Temática de Engenharia de Materiais 2005.
- HILLIG, E. et al. Caracterização de compósitos produzidos com polietileno de alta densidade (HDPE) e serragem da indústria moveleira. **Revista Árvore**, v.32, n.2, p.299-310, 2008.
- MANO, E. B.; PACHECO, E. B. A. V.; BONELLI, C. M. C. Meio Ambiente, Poluição e Reciclagem. São Paulo: Edgard Blucher, 2005. 182 p.