AVALIAÇÃO DO DESEMPENHO AGRONÔMICO DE PROGÊNIES DE MEIOS-IRMÃOS DE BATATA-DOCE

Lucas A. R. de Lima¹, Jadson dos S. Teixeira¹, Jackson da Silva¹, Paulo V. Ferreira⁵, Artur P. V. de Carvalho¹, Moisés T. da Silva¹, Mariângela G. Pereira¹, Rosa C. Lira⁵, Antônio B. da Silva Júnior², Felipe dos S. de Oliveira³, Islan D. E. de Carvalho⁴, Douglas F. dos Santos¹, Jair T. Cavalcante⁵, Lailton Soares⁵, José E. de Lira⁵, Yago R. Calheiros¹.

- 1. Graduando em Agronomia da Universidade Federal de Alagoas; * lucasalceux2@hotmail.com
- 2. Doutorando em Produção Vegetal Agronomia da Universidade Federal de Alagoas;
- 3. Mestrando em Agronomia da Universidade Estadual Paulista "Júlio de Mesquita Filho";
- 4. Doutorando em Genética e Melhoramento de Plantas da Universidade Federal Rural de Pernambuco;
- 5. Professor da Universidade Federal de Alagoas;

Palavras Chave: Ipomoea batatas, genótipos e produção.

Introdução

Na cultura da batata-doce, o baixo custo de produção, a rusticidade do cultivo, o alto potencial produtivo e o valor alimentício são fatores relevantes para sua utilização, principalmente na Agricultura Familiar.

No Brasil, a produção foi de 505 mil t e produtividade de 13,09 t.ha⁻¹, ocupando a vigésima colocação no ranking de produção mundial (FAO, 2012). O Estado de Alagoas produz 2,1% da produção nacional e uma produtividade de 7,33 t.ha⁻¹, onde a baixa produtividade se deve a baixa tecnologia usada no cultivo e não apresentar cultivares selecionadas para a região (CAVALCANTE et al., 2012).

Nesse sentido, programas de melhoramento de plantas ganha importância, pois é o principal instrumento para se obter um genótipo que atenda aos anseios da sociedade.

Assim, objetivou-se com a presente pesquisa avaliar o desempenho agronômico de progênies de meios-irmãos de batata-doce, visando o desenvolvimento de cultivares produtivas e adaptadas para a região.

Resultados e Discussão

A pesquisa foi desenvolvida no Centro de Ciências Agrárias da Universidade Federal de Alagoas (CECA/UFAL), localizado em Rio Largo – Alagoas, no ano de 2014.

Foram avaliadas cinco progênies de meios-irmãos de batata-doce, sendo: ($\Colon L6 \ X \ \Colon ?$), ($\Colon L6 \ X \ \Colon ?$), ($\Colon L6 \ X \ \Colon ?$), ($\Colon L6 \ X \ \Colon ?$), ($\Colon L6 \ \Colon ?$), as quais foram representadas por sete, três, quatro, dezessete e dois clones, respectivamente, além da cultivar Sergipana Vermelha que foi usada como testemunha.

A colheita foi efetuada aos 120 dias após o plantio das ramas. Os caracteres avaliados foram: Produção Total de Tubérculos (PTT), em t.ha-1; Produção de Tubérculos Não Comerciais (PTNC), em t.ha-1; Produção de Tubérculos Comerciais (PTC), em t.ha-1; Número de Tubérculos (NT), em u.ha-1, em Uni; Peso Médio de Tubérculo (PMT), em kg;

Na Tabela 01, observa-se para PTC, que é relevante para o pequeno produtor que vende a sua produção nas feiras livres, que a maioria dos clones estudados superou a testemunha, a cultivar Sergipana Vermelha.

Tabela 1: Desempenho agronômico de 34 genótipos de batata-doce. Rio Largo-AL. 2014.

batata-doce. Rio Largo-AL, 2014.					
Genótipos	PTT	PTNC	PTC	NT (x1000)	PMT
Clone l	7,38	1,23	6,14	56	0,13
Clone 2	0,68	0,00	0,68	8	0,09
Clone 3	23,39	0,57	22,82	64	0,37
Clone 4	6,30	0,00	6,30	24	0,26
Clone 5	9,49	0,50	8,98	32	0,30
Clone 6	2,99	0,18	2,82	16	0,19
Clone 7	22,52	0,60	21,92	64	0,35
Clone 8	23,47	0,58	22,88	104	0,35
Clone 11	17,60	0,49	17,11	72	0,24
Clone 12	16,31	0,26	16,04	68	0,24
Clone 13	11,80	0,31	11,49	28	0,42
Clone 14	2,82	0,00	2,82	8	0,35
Clone 24	11,04	0,00	11,04	40	0,28
Clone 25	18,81	1,42	17,39	84	0,22
Clone 26	14,22	0,26	14,22	28	0,58
Clone 27	11,25	0,34	10,91	40	0,28
Clone 28	5,90	0,42	5,48	48	0,12
Clone 29	14,68	1,56	13,12	80	0,18
Clone 30	1,52	0,00	1,52	4	0,38
Clone 32	1,78	0,87	0,91	28	0,06
Clone 34	19,41	0,76	18,65	84	0,23
Clone 35	33,15	0,13	31,83	124	0,27
Clone 36	42,20	0,30	41,9	68	0,62
Clone 37	36,27	0,95	35,32	124	0,29
Clone 38	10,97	0,56	10,41	32	0,34
Clone 39	27,71	0,00	27,71	84	0,33
Clone 40	14,51	1,11	13,4	72	0,20
Clone 41	15,91	2,43	13,48	100	0,16
Clone 42	7,97	0,00	7,97	28	0,28
Clone 43	25,45	0,00	25,45	44	0,58
Clone 44	13,26	0,58	12,68	72	0,18
Clone 45	20,41	0,23	20,18	92	0,22
Clone 46	7,34	0,00	7,34	80	0,04
SV	9,68	0,52	9,16	48	0,20
Média	14,95	0,50	14,41	57,29	0,28
Erro padrão	1,73	0,09	1,71	5,54	0,02
Desvio padrão		0,55	9,98	32,30	0,14
CV (%)	67,52	108,10	69,24	56,37	49,47
IC (%)	14,95±3,52	0,50±0,19	14,41±3,48	57,29±11,26	0,28±0,04

Os clones 36, 37 e 35 destacaram-se por apresentar PTC de quatro a três vezes a testemunho, evidenciando o potencia produtivo dos referidos clones, sendo esses resultados superiores aos encontrados por Cavalcante et al. (2012).

Conclusões

A maioria dos clones em estudos apresentaram alto potencial produtivo.

FOOD AND AGRICULTURA ORGANIZATION OF THE UNITED STATES NATIONS (FAO). **Dados agrícolas de 2012**. Disponível em: http://faostat.fao.org/DesktopDefault.aspx?PageID=339&lang=en. Acesso em: 05/06/2015.

CAVALCANTE, J. T.; FERREIRA, P. V.; SOARES, L. Correlações fenotípicas, genotípicas e de ambiente em clones de batata-doce [*Ipomoea batatas* (L.) Lam.], Rio largo - Alagoas. Ciência Agrícola, Rio Largo, v. 10, n. 1, p. 1-7, 2012.