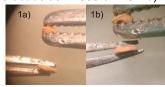
Formulação de sistemas bioinseticidas micro/nanoestruturados à base de *Beauveria bassiana* e seu uso no controle de pragas do coqueiro

Ingrid V. F. Monteiro^{1*}, Diogo P. C. Batista², Luciano A. M. Grillo³, Camila B. Dornelas³

- 1. Estudante de Iniciação Tecnológica da Escola de Enfermagem e Farmácia, Esenfar/UFAL; *ingrid_vfmonteiro@hotmail.com
- 2. Estudante de Pós-Graduação (Nível: Doutorado) do PPG em Ciência dos Materiais da Universidade Federal de Alagoas (UFAL)
- 3. Pesquisador da Esenfar/UFAL

Palavras Chave: Nanocompósito, Bioinseticida, Polímero hidrofílico

Introdução


A broca-do-olho-do-coqueiro Rhynchophorus palmarum é uma praga que ataca culturas de coqueiro de várias regiões do Brasil causando grande perda comercial e enormes prejuízos aos produtores (FERREIRA et al., 1998; GALLO et al., 1988). Uma das alternativas para o controle desse coleóptero é o uso de bioinseticidas, uma forma sustentável para o controle desta praga, visto que estas formulações usam agentes entomopatogênicos como princípio ativo, como o fungo Beauveria bassiana, que, no entanto, se apresenta sensível a fatores externos como calor e radiação. Assim, o projeto investigou o desenvolvimento de uma matriz a base de nanocompósito polimérico de alginato-bentonita para este fungo, objetivando uma formulação bioinseticida que garanta sua estabilidade sem prejuízo a sua ação em todos os estágios do R. palmarum. Para tal, foram preparados beads via gelificação ionotrópica, com o auxílio de diferentes tamanhos de ponteiras para gotejamento em cloreto de cálcio: ponteira de 1000 µL (P1000) e ponteira de 10 µL (P10). A concentração de alginato se manteve fixa em 1% para todas as formulações testadas, enquanto a bentonita foi investigada a 4 e 6%, obtendo-se AB4 e AB6, respectivamente. Foram avaliadas as seguintes variáveis: concentração de bentonita sódica, índice de intumescimento, tamanho de partícula, eficiência de encapsulação e liberação dos conídios fúngicos.

Resultados e Discussão

Eficiência de encapsulação: Todas as formulações apresentaram EE% superior a 97%. A mistura alginato/bentonita foi altamente eficaz na encapsulação do fungo.

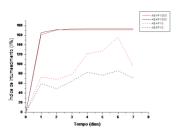

Tamanho de partícula: A diminuição da ponteira não alterou tamanho, mas a morfologia dos *beads*, que se mostraram mais achatados.

Figura 1. Aspecto de beads de P1000 e P10. 1a) AB4. 1b) AB6.

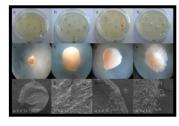

Índice de intumescimento: Menores índices de intumescimento foram encontrados para aquelas formulações com maiores concentrações de bentonita, isso para P10. Em P1000 não foi observada nenhuma variação significativa.

Figura 2. Avaliação temporal do índice de intumescimento para P1000 e P10

Liberação de conídios: Foi avaliada por observação visual e com auxílio das técnicas de estereoscopia e microscopia eletrônica de varredura (MEV). Para liberação por observação visual, o início da germinação miceliana se deu aproximadamente a partir de 48 horas pós-semeio para AB4. A estereoscopia acompanhou a observação a olho nu, mas possibilitou um maior evidenciamento do início do crescimento. Por meio do MEV, as modificações na superfície dos beads foram vistas em aproximadamente após 18 horas do cultivo.

Figura 3. Liberação *in vitro* de *B. bassiana* dos *beads* a-d: fotografias; e-h: estereoscopias; i-l: MEV

Conclusões

A matriz alginato/bentonita se mostrou eficiente na encapsulação do biotiavo, comprovado pelo bom resultado de eficiência de encapsulação. A diferença morfológica dos *beads* de P10 ocasionou um índice de intumescimento inferior aos *beads* de P1000. Além disso, o máximo do efeito de barreira da bentonita atingido, constado pela pouca variação entre o índice de intumescimento de AB4 e AB6, levou a escolha da formulação de AB4 P1000 para os experimentos subsequentes.

Agradecimentos

CAPES, CNPq, FAPEAL e FINEP

FERREIRA, J. M. S.; ARAÚJO, R. P. C.; SARRO, F. B. Táticas de manejo das pragas. In: FERREIRA, J. M. S. (Ed.). **Coco, fitossanidade**.Aracaju: Embrapa Tabuleiros Costeiros, 2002. 136 p. p. 83-106. (Frutas do Brasil, 28), 2009.

WU, Z.; GUO, L.; QIN, S.; LI,C. Encapsulation of *R. planticolaRs-2* from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. **J. Ind. MicrobiolBiotechnol 39,** 317-327, 2012.