Determinação das condições da microextração líquido-líquido dispersiva de Co, Cr, Cu, Ni e Pb para quantificação simultânea por Fluorescência de Raios-X de Energia Dispersiva.

Ohana Nadine de Almeida*¹, Julia Carneiro Romero², Sheylla Myrelle da Silva Queiroz², Francisco H. Martinez Luzardo³, Fábio Alan Carqueija Amorim³

- 1. Mestranda em Química UESC *ohana_1992@hotmail.com
- 2. Graduanda em Química, iniciação científica FAPESB UESC
- 3. Professor do Depto.de Ciências Exatas e Tecnológicas (DCET) Universidade Estadual de Santa Cruz, Ilhéus/BA

Palavras Chave: DLLME, FRXED, pré-concentração.

Introdução

Muitos metais têm funções vitais no organismo de seres humanos, quando em excesso passa a ser prejudicial a saúde, e outros metais não possuem função alguma como o Ni e Pb. É muito importante a determinação destes. A microextração líquido-líquido dispersiva (DLLME) baseiase na injeção de uma mistura ternária de solventes extrator, dispersor e complexante na amostra que permite pré-concentrar elementos sendo possível quantificar estes por técnicas que possuem limites de quantificação altos. A fluorescência de raios-x de energia dispersiva (FRXED) é uma técnica pouco utilizada para análise de elementos traço devido, principalmente, ao seu alto limite de detecção [2][3]. Este trabalho apresenta uma metodologia de pré-concentração, DLLME, para quantificação simultânea de Co, Cr, Cu, Ni e Pb por FRXED.

Resultados e Discussão

Para o desenvolvimento da metodologia fez-se necessário um planejamento fatorial 23 para verificar a significância das variáveis como pH, volume dos solventes extrator e dispersor nos níveis 5,5 e 8,5; 20 e 60 µL e 0,5 e 1,5 mL respectivamente com 5 mL de amostra, 1mL de tampão, metanol (solvente dispersor) e tricloroetileno (solvente extrator). Com 0 auxilio do pacote estatístico STATGRAPHICS.PLUS V.5.1, em que resultou a não significância das variáveis para determinação de cromo e cobalto, para níquel e cobre, a variável significativa foi o solvente extrator com favorecimento ao nível alto. As variáveis significativas para Pb foram o pH e o solvente extrator ambos ao nível alto como mostra a tabela 1.

Tabela 1. Significância das variáveis.

Cr	Со	Ni	Cu	Pb
N	N	B3(+0,697)	B3 (+0,510)	B1 (+0,379) B3 (+0,288)

N: Não há variável significativa; B1:pH; B3:Solvente extrator; (+) nível das significâncias.

Sendo assim deve-se otimizar univariadamente o solvente extrator fixando o pH em 8,5 e e o solvente dispersor em 0,5 mL. A partir dos valores da curva de otimização univariada, foi obtido um modelo de regressão não linear para cada metal com o pacote estatístico Curve Expert Professional (Tabela 2), e definido o valor do volume do solvente extrator em que apresentava o máximo de contagens por segundo.

Tabela 2: Equação do modelo de regressão não linear

Meta	Equação		
Cr	$-4,633.10^{6} + 1,207.10^{5}x$		
	$y = \frac{1 + (-6.394.10^3 x) + 5.143.10^2 x^2}{1 + (-6.394.10^3 x) + 5.143.10^2 x^2}$		
Со	$-2,203.10^7 + 4,414.10^5x$		
	$y = \frac{1}{1 + (-1,038.10^5 x) + 2,084.10^3 x^2}$		
Ni	$y = 5.649 + 3.991.10^{-1}\cos(3.142.10^{-1}x + 8.882.10^{-16})$		
Cu	$y = 3,186 + 3,324.10^{-1}\cos(3,142.10^{-1}x + 8,882.10^{-16})$		
Pb	$y = 2.291 + 3.472.10^{-1} \cos(1.190.10^{-1}x + (-1.219))$		

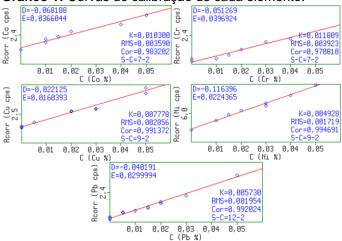

Y equivale ao volume de solvente dispersor em μL. Os extremos foram calculados mediante derivação e determinados o volume de solvente extrator que promove a resposta analítica (cps) máxima para cada metal (Tabela 3).

Tabela 3: Volume de solvente extrator otimizado.

	Volume de máximo (µL)
Cr	69,70
Со	52,16
Ni	58,01
Cu	58,17
Pb	63,02
Média geométrica	59,93

Para assumir um volume de compromisso para todos os elementos, foi feito a média geométrica e definido que o melhor volume de solvente extrator para a determinação destes cinco metais nesta metodologia é de 60 µL.

Gráfico 1: Curvas de calibração de cada elemento.

Tendo como fator de pré-concentração para Co, Cr, Cu, Ni e Pb de 58, 158, 90, 69 e 78 com limites de detecção de 1,52; 0,53; 0,62; 2,85 e 1,16 μ g L⁻¹ respectivamente.

Conclusões

A metodologia de microextração líquido-líquido dispersiva é eficiente para a determinação de Co, Cr, Cu, Ni e Pb por FRXED.

Agradecimentos

UESC, FAPESB

[1] BALIZA, P. X.; GOMES TEIXEIRA L. S.; LEMOS, V. A. A procedure for determination of cobalt in water samples after dispersive liquid-liquid microextraction. Microchemical Journal, v.93, n.2, Nov, p.220-224. 2009. [2] PYTLAKOWSKA, K.; SITKO, R. Energy-dispersive X-ray fluorescence spectrometry combined with dispersive liquid–liquid microextraction for simultaneous determination of zinc and copper in water samples. Polônia, Anal. Methods 5, 6192–6199, 2013.

[3] BAHADIR, Z. et al. Spectrochimica Acta Part B Cr speciation in water samples by dispersive liquid – liquid microextraction combined with total re fl ection X-ray fl uorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 115, p. 46–51, 2016.

68ª Reunião Anual da SBPC