Simulação de Propagação de Ondas em Meios Heterogêneos

Marceliano Eduardo de Oliveira^{1*}, Francisco Leandro de Oliveira Rodrigues²

- 1. Professor do Depto. de Física da UEA, Parintins / AM; *marcelianooliveira@gmail.com
- 2. Doutorando do Depto. de Física da UFC, Fortaleza / CE;

Palavras Chave: Propagação de Ondas; Operador de Bloqueio; Heterogeneidades

Introdução

O objetivo central deste trabalho é estudar a propagação de ondas em meios heterogêneos, usando um modelo computacional desenvolvido com o Método de Diferenças Finitas, (MDF).

A equação utilizada para a simulação da propagação de ondas é a equação de onda abaixo,

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u.$$

Tanto o operador de derivação temporal de segunda ordem, quanto o operador laplaciano, foram discretizados usando diferenças finitas centrais.

Resultados e Discussão

Foi possível introduzir o bloqueio total e parcial de alguns pontos no domínio bidimensional utilizando apenas um operador linear, que denominamos operador de bloqueio. Este operador é construído usando uma máscara em arquivo de texto, na qual se pode colocar valores que alteram a dinâmica temporal das propriedades em estudo no domínio, os valores inseridos neste arquivo podem variar entre 0 e 1, sendo que para 1 a dinâmica do ponto estudado é a dinâmica convencional de um domínio ausente de bloqueio; para o valor 0, o ponto com este valor permanecerá bloqueado durante a simulação, e para valores intermediários como por exemplo 0.5, a propriedade sofre modificação da dinâmica variando seu valor em função do tempo mais lentamente do que para os demais pontos do domínio.

Conclusões

O estudo de ondas frequentemente é realizado, utilizando as relações de D'Alambert. Nossa opção foi por simular o comportamento de propagação de uma onda em um domínio bidimensional utilizando diretamente a equação da onda.

A introdução de obstáculos através do uso de um operador de bloqueio mostrou-se bastante eficaz e versátil, pois este operador pode atuar diretamente na equação discretizada e modificar o código computacional minimamente.

A máscara utilizada para construir o operador de bloqueio funciona de maneira bastante intuitiva, permitindo a escolha direta dos valores entre 0 e 1 dos pontos heterogêneos do domínio permitindo recriar as situações adversas de um domínio irregular com bastante praticidade.

Agradecimentos

Os autores agradecem as diferentes fontes de trabalho que deram suporte aos estudos e que possibilitaram a confecção deste:

UEA – Universidade do Estado do Amazonas;

UFC - Universidade Federal do Ceará;

FAPEAM – Fundação de Amparo à Pesquisa do Estado do Amazonas;

CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior:

FINEP – Financiadora de Estudos e Projetos;

CNPq – Conselho Nacional de Ciência e Tecnologia Petrobrás S/A.