Evidences of the participation of excited states in the positronium formation mechanism in $Sm_{1-x}Eu_x(dpm)_3$ solid solutions studied by optical and positron annihilation spectroscopies

<u>F. Fulgêncio¹</u>*, R. Sábio², S.J. Ribeiro², A.S. Borges³, F.C. Oliveira⁴, M. H. Araújo¹, D. Windmöller¹, A. Marques-Netto¹, J.C. Machado¹, W.F. Magalhães¹

Departamento de Química, UFMG, Belo Horizonte-MG, Brazil.
Institute of Chemistry- São Paulo State University- UNESP, Araraquara-SP,Brazil
Coordenadoria de Química e Biologia, IFES, Campus Vitória-ES, Brazil.
Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Campus Timóteo, Timóteo-MG, Brazil.

*email: fefulgencio@gmail.com

Positron annihilation lifetime (PALS) and optical spectroscopies measurements were performed in solid solutions of general formula $Sm_{1-x}Eu_x(dpm)_3$, (dpm = 2,2,6,6-tetramethyl-3,5-pentanedionate). The results indicate that intra and intermolecular photophysical processes, such as the presence of low energy ligand-to-metal charge transfer (LMCT) states and $Sm^{3+} = Eu^{3+}$ energy transfers, play a major role on both luminescence lifetime quenching and positronium (Ps) formation probability. The results were interpreted from a recently proposed kinetic model which involves the participation of excited states in the Ps formation, called correlated cybotactic system kinetic mechanism (CCSKM). An equation, which satisfactorily fits the Stern-Volmer type experimental Ps yields data, was obtained correlated system {e^{+*} L*Sm}. Also, we correlated the Ps inhibition constant k obtained for $Sm_{1-x}Eu_x$ (dpm)₃ and $Tb_{1-x}Eu_x$ (dpm)₃ solid solutions with energy and charge transfer processes.

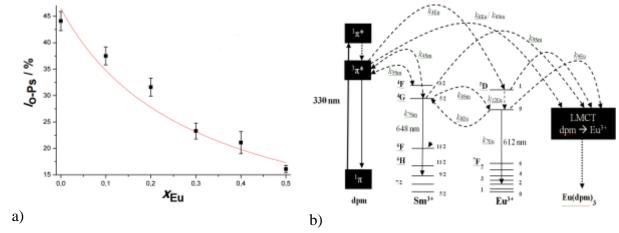


Fig.1. I_{o-Ps} (%) as a function of the mole fraction of Eu^{3+} (x_{Eu}) in $Sm_{1-x}Eu_x(dpm)_3$ solid solutions (a) and Partial energy level diagram for the relevant photophysical processes associated with photoluminescence in $Sm_{1-x}Eu_x(dpm)_3$ solids solutions.

[1] F. Fulgêncio, F.C. Oliveira, D. Windmöller, H.F. Brito, O.L. Malta, G.F. Sá, W.F. Magalhães, J.C. Machado, *Phys. Chem. Chem. Phys.* **14**, 9996 (2012)