1.05.99 - Física.

ANÁLISE DA DISPERSÃO DO ÍNDICE DE REFRAÇÃO E ESTRUTURA DE VIDROS TELURITOS Li₂O-TeO₂-Bi₂O₃ VIA MODELO DE WEMPLE - DIDOMENICO

Weverton A. S. Silva¹*, Marcio S. Figueiredo², Fábio A. Santos³ 1. Estudante de IC da Fac.de Ciências Exatas e Tecnologia da UFGD 2. Pesquisador da Faculdade de Ciências Exatas e Tecnologia da UFGD 3. FACET-UFGD - Física / Orientador

Resumo:

Neste estudo foram investigadas as modificações relacões entre as das propriedades estruturais e ópticas de vidros teluritos quando inserido o óxido Bi2O3 em diferentes concentrações na matriz TeO2-Li2O Medidas de espalhamento Raman (TL). demonstraram as modificações estruturais nas unidades básicas dos vidros TeO₂ е identificaram as vibrações características das unidades básicas TeO₄, TeO₃₊₁ e BiO₆, com destaque ao aumento de intensidade da banda em 770 cm⁻¹ para ambas as amostras, o que indica o papel do Bi₂O₃ como modificador de Para o índice de refração obtemos rede. valores crescentes com o incremento do modificador de rede. Por meio do modelo de Wemple estabelecemos os valores da energia de gap Sellmeier e da dispersão do índice de refração no qual apresenta um aumento com a quantidade de Bi₂O₃, deixando explicito a dependência do índice de refração com a energia de dispersão. Tal energia para materiais vítreos de acordo com modelo de Wemple é proporcional a densidade e ao coordenação, número de os quais apresentaram aumentos de acordo com a incorporação do modificador. Os resultados obtidos mostram que uma mudança na composição altera significativamente as propriedades estruturais e que a mesma tem forte influência nas propriedades ópticas.

Palavras-chave: Modelo de Wemple, Energia de dispersão, Índice de refração.

Apoio financeiro: Universidade Federal da Grande Dourados.

Trabalho selecionado para a JNIC pela instituição: UFGD.

Introdução:

Os vidros teluritos apresentam características interessantes do ponto de vista científico e tecnológico frente a vidros óxidos tradicionais, por exemplo, seu alto índice de refração linear (1,9 a 2,3) e não linear (~20 vezes maiores que de vidros silicatos), ampla

ianela de transparência óptica no infravermelho (de 0,4 a 0,6 µm), baixa energia $(\sim 750 \text{ cm}^{-1})$, alta constante de fônons dielétrica, altos coeficientes de expansão térmica, baixo ponto de fusão (800 °C), boa estabilidade térmica е química, baixa temperatura de transição vítrea (T_g < 400 °C), bem como, elevada solubilidade a adição de íons terra-raras [1,2]. Estas características tornam os vidros a base de TeO₂ materiais com grande potencial para aplicações em dispositivos fotônicos, por exemplo, para puxamento de fibras ópticas que entre muitos, justificam a intensa pesquisa dos vidros a base de telúrio nos últimos anos [3].

É importante ressaltar que propriedades físicas, elétricas, térmicas e apresentam ópticas forte correlação composicional, ou seja, a introdução de modificadores na rede vítrea pode provocar não apenas alterações estruturais, como também mudancas das propriedades supracitadas. Neste contexto, o presente trabalho tem como objetivo investigar os efeitos da adição de óxido de bismuto na dispersão do índice de refração linear da matriz vítrea Te-Li, bem como, a relação desta propriedade com sua estrutura utilizando o modelo de Wemple e DiDomenico [4]. Para isto, determinaremos o índice de refração linear dos vidros em diferentes comprimentos de onda utilizando um interferômetro de Michelson modificado, a densidade dos vidros por princípio de Arquimedes; e também a determinação dos modos vibracionais via espalhamento Raman. Além disso. determinaremos os valores da susceptibilidade não linear de terceira ordem $\chi^{(3)}$ que é um parâmetro importante para definição de uma aplicação óptica do material.

Modelo de Wemple:

Quando se trata de materiais para aplicação em dispositivos fotônicos, por exemplo, guias de ondas, quantificar a dependência do índice de refração com a frequência da luz é extremamente importante. O modelo de Wemple relaciona o índice de refração com a energia de dispersão através da equação abaixo:

$$n^2 - 1 = \frac{E_0 E_d}{E_0^2 - E^2} \tag{1}$$

Na qual E é a energia dos fótons incidentes e E_0 é a energia relacionada à frequência de ressonância do material também chamada de energia de gap Sellmeier. A energia de dispersão do índice de refração dos cristais E_d obedece a uma relação empírica indicada pela equação:

$$E_d = \beta N_e Z_a N_c \tag{2}$$

onde N_e é o número de elétrons de valência efetivos por ânion, N_c é o número de coordenação do cátion, Z_a é o valência do ânion e β é a ionicidade definida como sendo 0,26±0,04 para compostos iônicos e 0,39±0,04 para compostos covalentes. Para os materiais vítreos é valida a seguinte equação:

$$\frac{E_d^a}{E_d^c} = \frac{\rho^a}{\rho^c} \frac{N_c^a}{N_c^c} \tag{3}$$

No qual ρ é a densidade e os sobrescritos c e a são referentes as formas cristalinas e amorfas de modo respectivo [5].

Metodologia:

As matrizes vítreas utilizadas neste trabalho foram preparadas no Grupo de Vidros e Cerâmicas da Faculdade de Engenharia de Ilha Solteira - SP (GVC-FEIS) pelo método de fusão/resfriamento. amostras As foram preparadas com as composições: (80-x)TeO₂ + 20Li₂O + xBi₂O₃, com x= 0, 5, 10, 15 mol%, referidas no texto como TL, LTBi5, LTBi10 e LTBi15, respectivamente. As modificações estruturais provocadas pela adição de Bi₂O₃ na matriz TL foram investigadas através do espalhamento Raman, utilizando para estas medidas um Micro- Raman Olympus BX51, com excitação em 785 nm, do GVC-FEIS. Medidas de densidade foram realizadas através do método de Arguimedes utilizando água destilada a 25 ºC como fluido de imersão e uma balança de alta precisão. Para determinação da dispersão do índice de refração utilizamos um Interferômetro de luz branca (lâmpada de tungstênio) de Michelson montado no Grupo de Espectroscopia Óptica e Fototérmica da Universidade Estadual de Mato Grosso do Sul (GEOF-UEMS).

As medidas foram realizadas em amostras com espessura de aproximadamente 860 µm. O padrão de interferência foi projetado em uma fibra óptica ligada a um espectrômetro Ocean Optics modelo USB 2000+UV-Vis-ES com o software Spectra Suite e analisado em um computador no intervalo de 190-875 nm. O padrão de interferência obtido foi então ajustado em software computacional, na qual, se utiliza o modelo de Cauchy para determinar os valores de *n*.

Resultados e Discussão:

A Figura 1 exibe os espectros Raman na região de 200-900 cm⁻¹ para diferentes concentrações de Bi₂O₃ adicionados na matriz TL. Para a amostra LTBi5 nota-se as bandas centradas em 450 cm⁻¹ e 500 cm⁻¹ referente às vibrações de estiramento e dobra das ligações Te-O-Te atribuídas à estrutura TeO₄, bem como, a banda centrada em 660 cm⁻¹ também atribuída à bipirâmide trigonal TeO₄, e a banda centrada em 770 cm⁻¹ que surge devido a adição de modificadores de rede em vidros teluritos, sendo atribuída a pirâmide tigonal TeO₃ e/ou TeO₃₊₁ [3]. Com a adição de 10 mol% de bismuto na matriz TL em substituição ao telúrio, a diferença das intensidades relativas entre as bandas 660 cm⁻¹ e 770 cm⁻¹ aumenta acompanhado do acréscimo de uma quinta banda em 425 cm⁻¹.Com o aumento da concentração de Bi₂O₃ para 15 mol% as intensidades o aumento se mantem e destacase também um aumento de intensidade da banda centrada em 425 cm⁻¹. Tal fato evidência a contribuição do bismuto na modificação da estrutura do vidro TL, uma vez que, a vibração em 425 cm⁻¹ pode ser atribuída ao estiramento da ligação Te-O-Bi [6]. Estes resultados evidenciam que a adição de Bi₂O₃ no vidro telurito TL favorece uma modificação estrutural.

Figura 1: Espalhamento Raman para as diferentes matrizes vítreas.

A Figura 2 exibe a dispersão do índice de refração para as amostras aqui estudadas, no intervalo de comprimento de onda de 350-1400 nm. Nota-se, que o aumento da concentração de Bi_2O_3 na rede vítrea promoveu um aumento do índice de refração para todas as amostras, evidenciando a dependência do índice de refração com a composição. Nossos resultados concordam com aqueles observados por Capanema *et. al.* [7] na matriz vítrea 80TeO₂+(20-*x*)Li₂O+*x*TiO₂, quando alterou a concentração do modificador de rede.

Neste sentido, a dependência do índice refração com a composição é investigada através do modelo de Wemple - DiDomenico.

A Figura 3 exibe a curva $1/(n^2 - 1)$ em função de E^2 obtido a partir dos dados de dispersão do índice de refração e aplicação do modelo de Wemple. Utilizando os coeficientes do ajuste linear desta curva determinamos os valores de E_d e E_0 . Este procedimento foi aplicado na análise de dados para todas as matrizes.

A Tabela 1 exibe os valores de E_d , que cresce com o incremento do óxido de bismuto, e também exibe os valores de E_0 que decrescem com a adição de bismuto, destacando uma maior variação de valores para E_d . Para o melhor entendimento da variação observada em E_d e sua relação com o índice de refração fizemos o uso das equações 2 e 3 no cálculo dos parâmetros apresentados na tabela.

Figura 3: Gráfico de 1/ (n² -1) em função de E², baseado no método de Wemple.

Tabela 1: Energia de dispersão (E_d), energia de gap Sellmeier (E_0), densidade (\Box), número de coordenação (N_c) e susceptibilidade de terceira ordem($\chi^{(3)}$).

Amostra	E _d (eV)	E₀(eV)	ρ (g/cm³)	Nc	<i>X</i> ⁽³⁾ (10⁻¹³ esu)	Referências
Te ₂ O ^c	23,2		5,99	6		[7]
Li₂O ^c	16,6		2,01	4		[7]
Bi ₂ O ₃ ^c	24,96		8,9	6		
TL°	33,2		5,19	5,6		autor
LTBi5°	33,2		5,34	5,6		autor
LTBi10 ^c	33,2		5,48	5,6		autor
LTBi15⁰	33,2		5,63	5,6		autor
TLª	19,04	6,95	5,05	3,3	6,57	autor
LTBi5 ^a	19,39	7,03	5,29	3,3	6,45	autor
LTBi10 ^a	20,42	6,89	5,60	3,4	8,25	autor
LTBi15 ^a	21,23	6,77	5,87	3,4	10,15	autor

Os resultados revelam que o número de coordenação médio é de 3,4, não apresentando uma significativa mudança com a adição do modificador, já a densidade aumenta, o que nos permite justificar o acréscimo no índice de refração devido ao aumento da densidade eletrônica [8]. Os valores de N_c obtidos concordam com as medidas de Raman onde temos o aumento da banda referente a estrutura TeO₃₊₁.

Além da relação dos parâmetros ópticos lineares com a estrutura do material destacamos também а obtenção da susceptibilidade óptica não-linear de terceira ordem $\chi^{(3)}$ calculado através da teoria de Lines, que baseia-se na dispersão do índice de refração linear [9]. É importante destacar que o parâmetro $\chi^{(3)}$ está diretamente relacionado ao índice de refração não linear n₂, cujo valor é relevante para definição de uma aplicação deste tipo de material na área de telecomunicações. Os resultados obtidos para $\chi^{(3)}$ exibidos na Tabela 1 revelam um aumento com adição de Bi₂O₃, corroborando com a dispersão do índice de refração linear e os

demais parâmetros obtidos para nossas amostras. Os valores de $\chi^{(3)}$ para nossas amostras são coerentes com aqueles obtidos para outras matrizes de vidros teluritos encontrados na literatura [10].

Conclusões:

A partir das medidas de espalhamento Raman podemos observar que o acréscimo do oxido de bismuto na matriz TL favorece a formação de pirâmides trigonais em substituição das bipirâmides confirmado pelo aumento da banda em 770 cm⁻¹ evidenciando o papel do Bi₂O₃ como modificador de rede. Para o índice de refração obtemos valores crescentes com o incremento do modificador de rede. Por meio do modelo de Wemple estabelecemos os valores da energia de gap Sellmeier com variação pouco significativa e da dispersão do índice de refração no qual apresenta um aumento com o incremento de Bi₂O₃, deixando explicito a dependência do índice de refração com a energia de dispersão. Tal energia para materiais vítreos de acordo com modelo de Wemple são proporcionais a densidade e ao número de coordenação onde os mesmos apresentaram aumentos de acordo com a incorporação do modificador. Os resultados obtidos mostram que uma mudança na composição altera significativamente as propriedades estruturais e que a mesma tem forte influência nas propriedades ópticas provocando alterações significativas no índice de refração e na susceptibilidade elétrica de sugerindo promissoras terceira ordem aplicações em geração de terceiro harmônico.

Referências bibliográficas

[1] Santos, F. A., *Estudo Estrutural dos Vidros Teluretos por Espectroscopia Infravermelho e Raman*, Monografia apresentada ao programa de Pós-Graduação em Ciências dos Materiais da Universidade Estadual Paulista de Ilha Solteira, 2010.

[2] Figueiredo, M. S., Avaliação óptica de vidros teluritos preparados com Er³⁺ e Er³⁺/Yb³⁺ para avaliação fotônica, Tese apresentada ao programa de Pós-Graduação em Ciências dos Materiais da Universidade Estadual Paulista de Ilha Solteira, 2013.

[3] Idalgo, E., Araújo, E. B., Structural and termal propperties of tellurite 20Li₂O-80TeO₂. *Cerâmica* ,55(2007), 325-333.

[4] Wemple, S. H., Refractive-Index Behavior of Amorphous Semiconductors and Glasses, *Physical Review Letters*, 7(1973), 3767-3777.

[5] Wemple, S. H., DiDomenico, M. Jr., Optical Dispersion and the Structure of Solids, *Physical Review Letters*, 23(1969), 1156-1160.

[6] Srinivasu, C., *et. al. Journal of Non-Crystalline Solids*, 357 (2011) 1051-1055.

[7] Capanema, W. A., et al. The structure and optical dispersion of the refractive index of tellurite glass. *Optical Materials*, 33(2011), 1569-1572.

[8] Capanema Junior, W. A., *Um estudo do efeito da composição dos vidros teluretos sobre os índices de refração linear e não linear*, Dissertação de mestrado apresentada ao programa de Pós-Graduação em Ciências dos Materiais da Universidade Estadual Paulista de Ilha Solteira, 2007.

[9] Yousef, E. S., et al., The effect of CdS on linear and non-linear refractive indices of glasses in the system TeO₂/Nb₂O₅/ZnO, *Journal of Non-Crystalline Solids*, 354(2008) 4675-4680.

[10] T. Fujiwara, T. Hayakawa, M. Nogami, P. Thomas, Structures and Third-Order Optical Nonlinearities of BiO_{1.5}-WO₃-TeO₂ glasses. *J. Am. Ceram. Soc.* 94 (2011) 1434-1439.