1.01.04 – Matemática / Matemática Aplicada.

MÉTODOS NUMÉRICOS E COMPUTACIONAIS NA RESOLUÇÃO DE UM PROBLEMA CONTEXTUALIZADO

Bernardo A. da Cruz 1*, Sandra E. Vielmo2

Estudante de IC da Universidade Federal de Santa Maria, Matemática Licenciatura da UFSM
 Departamento de Matemática / Orientadora

Resumo:

Inicialmente neste trabalho foi proposto o esboco do leito de um rio, cujas distâncias de alguns pontos nas duas margens até uma linha reta, traçada próxima a uma das margens, são conhecidas. Com o auxílio do GeoGebra, esta situação foi melhor visualizada e os seguintes questionamentos puderam ser empreendidos: A partir de valores das margens já conhecidos em alguns pontos, é possível obter uma aproximação para a largura do rio em uma posição qualquer da margem? É possível determinar o valor aproximado da área da região geográfica ocupada pelo rio em um determindo trecho? Ainda, para qual(is) posição(ões) na margem do rio, a largura do mesmo será máxima? Α partir destas situações-problema e suas resoluções, foi possível uma melhor compreensão dos métodos numéricos analisados e a sua utilização crítica ao responder questionamentos demandados por situações modeladas matematicamente, contribuindo para a melhoria da formação acadêmica do licenciando.

Palavras-chave: Métodos Numéricos; Problema Contextualizado; Softwares Matemáticos.

Apoio financeiro: Programa de Educação Tutorial – SESU/PET

Trabalho selecionado para a JNIC pela instituição: UFSM

Introdução:

Este trabalho foi pensado a partir da análise do resultado de pesquisas e estudos de alguns métodos numéricos e computacionais, visando utilizá-los na resolução de um problema contextualizado.

Observa-se que a resolução de um problema real está vinculada ao grau de complexidade empregado em sua formulação e muitas vezes torna-se impossível sua resolução de maneira analítica. Desta forma, justifica-se a utilização de métodos numéricos e computacionais e dos aplicativos GeoGebra e Visual Computational Numerical (VCN) para a

obtenção de uma solução aproximada numericamente.

No Brasil existe uma grande quantidade de bacias hidrográficas e, devido à imensidão de algumas e o difícil acesso as suas margens, nem sempre é possível medir sua largura em qualquer posição das mesmas, bem como determinar a área ocupada pelo leito em uma determinada região geográfica ou ainda, em que pontos a largura do mesmo é máxima.

Assim, a partir do esboço do leito de um rio, onde são conhecidos os valores das duas margens em alguns pontos, a presente pesquisa tem por objetivo responder os seguintes questionamentos:

- i) É possível obter o valor numérico da largura do rio em uma posição qualquer da margem?
- ii) É possível determinar o valor aproximado da área da região geográfica ocupada pelo rio em um determindo trecho ao longo da margem?
- iii) Para qual(is) posição(ões) na margem do rio, a largura do mesmo será máxima?

Metodologia:

desenvolvido trabalho pelo acadêmico de IC do Curso de Matemática Licenciatura da UFSM, deu-se a partir de seu interesse em estudar métodos numéricos e computacionais, onde foram vistos métodos para obtenção de zeros de funções, ajuste de pontos através de interpolação polinomial ou mínimos quadrados e integração numérica, da visualização gráfica e acompanhados utilização aplicativos de alguns como GeoGebra e VCN. Como resultado final da foi proposto um problema pesquisa, contextualizado sobre o leito de um rio, cujas situações-problema associadas fossem solucionadas através destes métodos numéricos. Os dados iniciais utilizados podem ser observados no Quadro 1 e a visualização do leito do rio na Figua 1.

Quadro 1 - Valores das margens nos pontos iniciais

x (m)	0	15	30	45	60
$y(M_1)$	50	86	146	75,5	50
$y(M_2)$	112,5	154,5	195	171	95,5

Fonte: Autor.

Para responder primeiro questionamento, ou seja, obter uma aproximação numérica do valor da largura do rio em um ponto qualquer da margem, foi necessário inicialmente obter uma função que descrevesse o comportamento de cada uma das margens M_1 e M_2 . Para tal, no aplicativo VCN foi utilizado o método de Interpolação Polinomial por Diferenças Divididas (Forma de Newton) com os cinco pontos do Quadro 1, resultando:

$$M_1(x) = 0,000272x^4 - 0,032074x^3 + 1,068889x^2 - 7,333333x + 50$$

$$M_2(x) = 0.000062x^4 - 0.008741x^3 + 0.291481x^2 + 0.183333x + 112.5$$

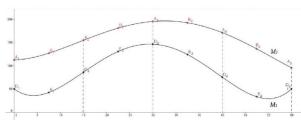
Assim, a largura L do rio em um ponto qualquer da margem no intervalo [0,60], pode ser obtida considerando $L(x)=M_2(x)-M_1(x)$. Tomando, por exemplo, os pontos médio de cada intervalo do Quadro 1, foram obtidos os valores de M_1 , M_2 e L, descritos no Quadro 2 e visualizados na Figura 1.

Quadro 2 - Valores das margens nos pontos médios

x (m)	7,5	22,5	37,5	52,5
$y(M_1)$	42,453	130,39	123,82	33,26
$y(M_2)$	126,78	180,65	192,03	135,90
y(L)	84,327	50,26	68,21	102,64

Fonte: Autor.

Figura 1 - Representação do leito do rio



Fonte: GeoGebra.

A fim de responder o segundo questionamento, isto é, obter uma aproximação para a área da região geográfica ocupada pelo rio no intervalo de 60m, foi utilizada a Regra de

integração numérica $\frac{1}{3}$ Simpson com os nove pontos dos Quadros 1 e 2, no *VCN*. Assim,

Área =
$$\int_0^{60} L(x)dx$$

 $\cong \frac{h}{3}[L(x_1) + 2[L(x_3) + L(x_5) + Lx7 + 4Lx2 + Lx4 + Lx6 + Lx8]$
 $+Lx9 \cong 4231m2$

Em relação ao questionamento sobre as posições na margem do rio em que a largura do mesmo é máxima, devem ser obtidos os pontos críticos de L(x), isto é, os zeros de L'(x). As aproximações obtidas para os três pontos críticos, usando o aplicativo VCN e os métodos iterativos da Bissecção e Newton, com uma precisão de $\varepsilon=10^{-4}$, são visualizados no Quadro 3.

Quadro 3 – Métodos da bissecção e Newton

$c_1 = 6,6866$						
	Bissecção	Newton				
Dados iniciais	[6, 7]	$x_0 = 6.5$				
Nº iterações	10	2				
$c_2 = 26,7284$						
Dados iniciais	[26, 27]	$x_0 = 26,5$				
Nº iterações	9	2				
$c_3 = 50,2956$						
Dados iniciais	[50, 51]	$x_0 = 50.5$				
Nº iterações	12	2				

Fonte: Autor.

Resultados e Discussão:

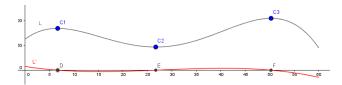
Com o objetivo de enriquecer as estratégias adotadas anteriormente, as mesmas serão discutidas e comparadas com outros resultados obtidos no aplicativo GeoGebra, através de determinados comandos.

Em relação a área da região ocupada pelo leito do rio obtida no VCN, usando o comando Integral[<função>,<Valor de <math>x Inicial>,<Valor de <math>x Inicial>, com a função L(x), valor inicial x=0 e final x=60, o valor da área será $4395,1679m^2$. Ou seja, ocorreu um erro de 3,7% na aproximação obtida pela Regra $\frac{1}{3}$ Simpson, quando comparado com o valor obtido no GeoGebra.

Associando o terceiro questionamento ao cálculo diferencial, os valores máximos da largura do rio correspondem aos pontos críticos de L(x), ou seja, aos pontos tais que a derivada da função polinomial L(x) se anula. No GeoGebra, usando o comando Raízes[<Função>,<Valor de x Inicial>,<Valor de x Final>], com a função L'(x), valor inicial x=0 e final x=60, são obtidos os pontos críticos

 $c_1 = 6,6866$, $c_2 = 26,7284$ e $c_3 = 50,2956$, os quais podem ser visualizados na Figura 2, juntamente com os gráficos das funções L(x) e L'(x).

Figura 2 – Pontos críticos de L(x)



Fonte: GeoGebra.

A partir da análise gráfica da função L'(x) na Figura 2, observa-se que os pontos críticos C1 e C3 são máximos relativos e C2 é um mínimo relativo de L(x). Calculando os valores de L(x) para $c_1 = 6,6866$ e $c_3 = 50,2956$, observa-se que o valor máximo da largura do rio é aproximadamente 105m, ocorrendo no ponto c_3 .

Conclusões:

Com o desenvolvimento deste trabalho associado a um problema modelado matematicamente, foi possível obter uma melhor compreensão dos métodos numéricos utilizados. Além disso, a associação com aplicativos matemáticos possibilitaram agilidade nos questionamentos demandados e ampliaram os conhecimentos acadêmicos, para além dos adquiridos na graduação.

Referências bibliográficas

BASSANEZI, R. C. **Ensino-Aprendizagem com Modelagem Matemática**. São Paulo: Editora Contexto, 2010.

BURDEN, R. L.; FAIRES, J. D. Análise Numérica. São Paulo: Cengage Learning, 2008.

GeoGebra. Disponível em www.qeoqebra.org.

RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo Numérico: Aspectos Teóricos e Computacionais. São Paulo: Makron Books, 1996.

THOMAS, G. B. **Cálculo**, v. 1. São Paulo: Addison Wesley, 2009.

Visual Computational Numerical (VCN).

Disponível em

www.matematica.pucminas.br/lcn/vcn1.htm