3.04.99 - Engenharia Elétrica

ESTIMAÇÃO DE TENSÃO E CORRENTE NA CARGA DE UM SISTEMA DE TRANSFERÊNCIA INDUTIVA DE POTÊNCIA

Celton Ribeiro Barbosa¹*, Raphaela Nunes Pereira², Azauri Albano de Oliveira Júnior³
1. Pós Graduando Em Engenharia Elétrica - EESC – USP, Professor do IFBA
2. Graduanda em Engenharia Elétrica – IFBA

3. Professor do Departamento de Engenharia Elétrica e Computação – EESC-USP

Resumo:

Este trabalho apresenta uma técnica para estimar a tensão e a corrente na carga de um sistema de Transferência Indutiva de Potência (TIP) utilizando medidas de tensão e corrente em elementos do circuito primário. Uma das grandes vantagens é a redução dos custos e da complexidade do sistema, pois não será mais necessário um sistema de comunicação que forneça os valores de tensão e corrente da carga para o controlador no lado primário. Os resultados mostram que a metodologia proposta é eficiente porque os valores estimados e reais são muitos similares. Como a técnica é baseada num pequeno número de equações, os processamentos das ações de controle são rápidos e isto é importante, pois, sistemas TIP operam em altas frequências.

Palavras-chave: Controle PI; Recarga de bateria; Transferência de energia sem fio.

Introdução:

A Transferência Indutiva de Potência (TIP) é uma maneira de se realizar a transferência de energia elétrica sem fio e tem se popularizado muito atualmente. Pois, a recarga de baterias com TIP permite a popularização de diversos equipamentos elétricos tais como, celulares, implantes biomédicos e veículos elétricos [1]. Encontra-se na Figura 1 um exemplo de sistema TIP que consiste em um lado primário e um lado secundário. O lado primário é responsável por gerar um campo magnético alternado, numa frequência geralmente maior que 10 kHz [2] através do indutor emissor (L_p). O indutor receptor (L_s) está acoplado magneticamente com L_p e fornece energia ao circuito presente no lado secundário. O meio entre os indutores L_p e L_s não é sólido (geralmente é o ar) e a posição espacial relativa entre eles pode variar. Isto implica na alteração da indutância mútua (M) e portanto, é necessária a implementação de um controlador no lado primário ou secundário (ou em ambos os lados) para garantir tensões e/ou correntes adequadas na carga.

Alguns trabalhos com TIP adotam o controle somente no lado primário e utilizam um sistema de comunicação sem fio para fornecer os valores reais da tensão (V_o) e corrente (I_o) na carga para o controlador. O controlador somente no lado primário reduz o custo total do sistema, a complexidade e o tamanho. Além disso, aumenta a eficiência e a confiabilidade [3]. Porém, o sistema de comunicação sem fio aumenta a complexidade do projeto e para resolver este problema alguns artigos tais como [3],[4],[5],[6], vem propondo técnicas de estimação de V_o e I_o no lado primário para elimina-lo.

O sistema TIP presente na Figura 1, sem o controlador, foi proposto em [7] e o trabalho em [8] apresenta um estudo que concluiu que o sistema é robusto e adequado nas situações que ocorrem variações de M, L_p e L_s . Ainda não foi encontrado na literatura uma técnica de estimação para esse tipo de sistema. Portanto, o objetivo deste trabalho é propor uma maneira de estimar V_o e I_o no sistema presente na Figura 1, utilizando medidas de tensão e corrente em elementos do circuito primário.

Metodologia:

A Figura 1 apresenta o sistema TIP desenvolvido em [7] e a nova proposta de controlador, que estima e regula V_o e I_o . Assim, o princípio de funcionamento é baseado na medição dos valores das correntes nos indutores L_{fp} e L_p e do primeiro harmônico da tensão de saída do inversor de frequência (U_{AB}). Em seguida os valores estimados são fornecidos para um controlador PI que altera a tensão contínua de entrada do inversor (U_{in}) para regular os valores de V_o e I_o .

• Estimando a tensão na carga:

$$\mathbf{I}_{Lfp_1st} = \frac{kU_{ab}\sqrt{L_{p}L_{s}}}{\omega_{0}L_{fp}L_{fs}} - j\frac{\frac{U_{ab}^{2}}{U_{AB}}\left(\frac{\Delta L_{e2}}{L_{fs}} - \frac{1}{4}\right)}{\omega_{0}L_{fs}}$$
(1)

Quando o sistema é ajustado pra obter Zero Voltage Switing (ZVS) o fasor do primeiro harmônico da corrente em L_{fp} é dado por (1) [7]. A variável k é o coeficiente de acoplamento entre L_p e L_s , U_{AB} a amplitude do primeiro harmônico da tensão de saída do inversor, ω_0 frequência angular da corrente em L_p , U_{ab} a

amplitude do primeiro harmônico da tensão de entrada no retificador, ΔL_{e2} uma constante definida para garantir ZVS. Portanto, é possível estimar U_{ab} obtendo a parte imaginária de (1) e o valor de U_{AB} e logo em seguida encontrar V_o .

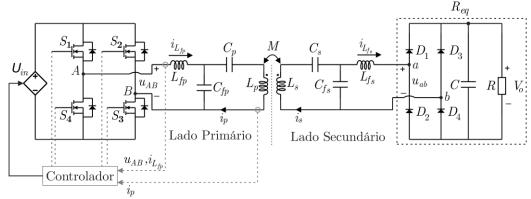


Figura 1. Sistema TIP com nova proposta de estimação e controle de tensão na carga.

Considerando que os primeiros harmônicos das corrente nos indutores L_{fp} e L_p sejam iguais a [7]:

$$i_{Lfp\ 1st} = \sqrt{2}I_{Lfp\ 1st} \cos(\omega_0 t - \beta) \tag{2}$$

$$i_{p1st} = \sqrt{2}I_p \cos(\omega_0 t - \pi/2) \tag{3}$$

onde I_{Lfp_1st} e I_p são os valores eficazes das correntes.

O produto entre i_{Lfp_1st} e i_{p1st} é

$$i_{Lfp_1st} \cdot i_{p1st} = 2I_{Lfp_1st} I_p \cos(\omega_0 t - \beta) \cos(\omega_0 t - \pi/2)$$
 (4)

Aplicando a identidade trigonométrica

$$\cos(A)\cos(B) = \frac{1}{2}[\cos(A - B) + \cos(A + B)]$$
 (5)

$$i_{Lfp_1st} \cdot i_{p1st} = -I_{Lfp_1st}I_p \sin(\beta) + I_{Lfp_1st}I_p \cos(2\omega_0 t - \beta - \pi/2)$$
(6)

Considerando que a componente constante ou CC de (6) é dada por:

$$I_{CC} = -I_{Lfp_{1st}}I_p\sin\beta\tag{7}$$

$$I_p = \frac{U_{AB}}{\omega_0 L_{fp}} \tag{8}$$

O valor de I_p é encontrado com (8) [7] , logo

$$I_{Lfp_{1st}}\sin(\beta) = -I_{CC} \cdot \frac{\omega_0 L_{fp}}{U_{AB}} \tag{9}$$

O valor de I_{CC} pode ser obtido utilizando um filtro passa baixa na saída do sinal resultante de i_{Lfp_1st} · i_{p1st} que em seguida é substituído em (9) para encontra o valor da parte imaginária de (1) .

$$U_{ab_\text{estimado}} = \sqrt{\frac{I_{Lfp_{1st}}\sin(\beta) \cdot \omega_0 L_{fs} \cdot U_{AB}}{\frac{\Delta L_{e2}}{L_{fs}} - \frac{1}{4}}}$$
(10)

Portanto, o valor estimado de U_{ab} pode ser encontrado com (10) e desprezando a queda de tensão nos diodos do retificador tem-se que a tensão estimada na carga ($V_{o \text{ est}}$) é dada por:

$$V_{o_\text{est}} = \frac{\pi\sqrt{2}}{4}U_{ab_\text{estimado}} \tag{11}$$

• Estimando a corrente na carga:

Se as perdas no sistema são desprezíveis, o valor da corrente na carga pode ser estimado com $V_{o_{\rm est}}$ e a potência ativa que esta sendo fornecida pelo inversor (P). Considerando que os primeiros harmônicos da tensão e corrente fornecida pelo inversor são iguais a:

$$u_{AB1st} = \sqrt{2}U_{AB}\cos(\omega t)$$

$$i_{Lfp_1st} = \sqrt{2}I_{Lfp_1st}\cos(\omega t - \beta)$$

onde U_{AB} e I_{Lfp_1st} são os valores eficazes da tensão e corrente respectivamente.

Tem-se que a potência instantânea é

$$u_{AB1st} \cdot i_{Lfp_{1st}} = 2U_{AB}I_{Lfp_{1st}}\cos(\omega t)\cos(\omega t - \beta)$$
(11)

Utilizando a identidade trigonométrica

$$\cos(A)\cos(B) = \frac{1}{2}[\cos(A - B) + \cos(A + B)]$$

Obtém-se

$$u_{AB1st} \cdot i_{Lfp_{1st}} = U_{AB}I_{Lfp_{1st}}\cos(-\beta) + U_{AB}I_{Lfp_{1st}}\cos(2\omega t - \beta)$$
 (12)

$$P = U_{AB}I_{Lfp_{1st}}\cos(-\beta) \tag{13}$$

$$I_{o_est} = \frac{P}{V_{o\ est}} \tag{14}$$

A potência ativa é igual a componente CC de (12) e portanto a corrente estimada é obtida com (14).

Resultados e Discussão:

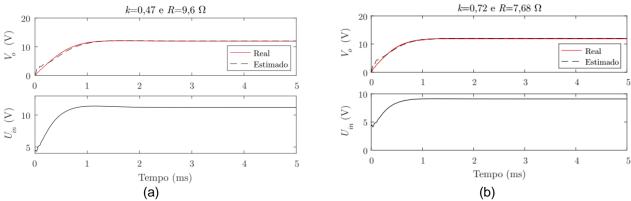

Para validar a proposta de estimação deste trabalho, o circuito presente na Figura 1 foi simulado no programa SIMULINK considerando os dados da Tabela 1.

Tabela 1. Valores das capacitâncias e indutâncias nos circuitos primário e secundário além dos ganhos proporcional (K_n) e integrativo (K_i) do PI utilizados no sistema TIP presente na Figura 1.

	` F'					
Primário		Secundário		Ganhos do Pl	Controle de tensão	Controle de Corrente
Variável	Valor	Variável	Valor	K_p	0,35	3
L_p	28,25 μΗ	L_s	28,23 μΗ	K_i	2200	15000
L_{fp}	13,49 μΗ	L_{fs}	13,3 μΗ			
C_{fp}	260 nF	C_{fs}	263,6 nF			
$\overline{C_p}$	237,5 nF	C_s	332,15 nF			
		С	24,4 μF			
		ΔL_{e2}	4,375 μΗ			

Fonte: Elaborada pelos autores.

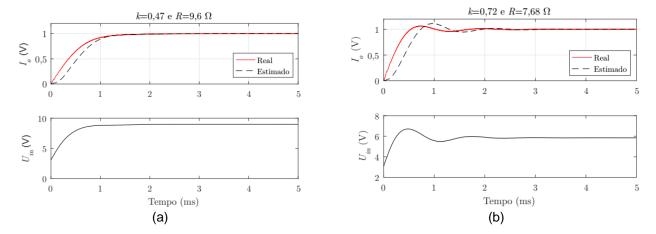

A Figura 2 apresenta os resultados da simulação da tensão estimada na carga considerando que a tensão de referência é de 12 V. Como pode-se observar $V_{o_{\rm est}}$ é muito similar ao valor real inclusive no período transitório.

Figura 2. Resultados de simulação da tensão real (V_o) e estimada (V_{o_est}) na carga e da tensão de entrada no inversor de frequência (U_{in}) considerando uma tensão de referência de 12 V.

Os valores simulados da corrente estimada e real na carga considerando um valor de referência de 1 A se encontram na Figura 3 e eles não são similares no período transitório. Porém, isto é esperado pois toda as equações apresentadas neste trabalho consideram somente o sistema em regime permanente. Entretanto, os

erros presentes no período transitório não afetaram o desempenho do controlador e em regime permanente a corrente estimada é muito similar à real.

Figura 3. Resultados de simulação da corrente real (I_o) e estimada (I_{o_est}) na carga e da tensão de entrada no inversor de frequência (U_{in}) considerando uma corrente de referência de 1 A.

Fica muito claro também nas Figuras 2 e 3 que os valores estimados são muito similares aos reais mesmo diante de variações de k e da resistência da carga. Esta característica é importante em sistemas TIP para recarga de baterias, pois a bateria pode ser considerada uma resistência variável durante a recarga. Como a grande maioria das aplicações com TIP são utilizadas para recarga de baterias a nova proposta de estimação e controle é uma boa alternativa para redução de custo e popularização desta tecnologia.

Conclusões:

Este trabalho apresenta uma técnica de estimação de tensão e corrente na carga de um sistema TIP utilizando um pequeno conjunto de equações. Isto é interessante porque minimiza a quantidade de linhas de código executados nos controladores, o que implica em ações de controle executadas em tempos mais curtos. Isto é necessário porque sistemas TIP operam em altas frequências.

Os resultados de simulação demonstram que o sistema proposto é eficiente e os valores reais e estimado são similares em uma ampla faixa de tempo. O controle conseguiu regular a tensão e a corrente na carga e portanto, a técnica proposta pode ser uma alternativa para minimizar os custo e a complexidade dos sistemas TIP.

Referências bibliográficas

- [1] Z. Bi, T. Kan, C. C. Mi, Y. Zhang, Z. Zhao, and G. A. Keoleian, "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," **Appl. Energy**, vol. 179, pp. 413–425, Oct. 2016.
- [2] R. C. Fernandes and A. A. J. Oliveira, "Tópicos selecionados sobre o estado-da-arte em transferência indutiva de potência," **Eletrônica de Potência**, vol. 19, pp. 58–71, 2014.
- D. J. Thrimawithana and U. K. Madawala, "A primary side controller for inductive power transfer systems," in **2010 IEEE International Conference on Industrial Technology**, 2010, pp. 661–666.
- [4] M. Zaheer, J. S. Suri, and H. B. Nemade, "Primary side control based inductively coupled powering scheme for biomedical implants," in **Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics**, 2012, vol. 25, no. Bhi, pp. 174–179.
- [5] L. P. Di Noia, L. Piegari, and R. Rizzo, "Evaluation of voltages and currents in an IPT system through Kalman Filter," in **5th IET International Conference on Renewable Power Generation (RPG) 2016**, 2016, vol. 2016, p. 65 (6 .)-65 (6 .).
- [6] J. P. W. Chow and H. S. H. Chung, "Use of primary-side information to perform online estimation of the secondary-side information and mutual inductance in wireless inductive link," in **2015 IEEE Applied Power Electronics Conference and Exposition (APEC)**, 2015, vol. 2015–May, no. May, pp. 2648–2655.
- [7] S. Li, W. Li, J. Deng, T. D. Nguyen, and C. C. Mi, "A Double-Sided LCC Compensation Network and Its Tuning Method for Wireless Power Transfer," **IEEE Trans. Veh. Technol.**, vol. 64, no. 6, pp. 2261–2273, Jun. 2015.
- [8] W. Li, H. Zhao, J. Deng, S. Li, and C. C. Mi, "Comparison Study on SS and Double-Sided LCC Compensation Topologies for EV/PHEV Wireless Chargers," **IEEE Trans. Veh. Technol.**, vol. 65, no. 6, pp. 4429–4439, Jun. 2016.