27 de setembro a 01 de outubro de 2010

TEOR E ACÚMULO DE Cu, Fe E Mn DO RIZOMA E RAIZ DE PLANTAS DE Strelitzia augusta EM FUNÇÃO DE DEFICIÊNCIAS DE MACRONUTRIENTES

<u>VIVIANE AMARAL TOLEDO COELHO¹</u>; CLEBER LÁZARO RODAS²; JANICE GUEDES DE CARVALHO³; LÍVIA CRISTINA COELHO⁴; MARISLAINE ALVES DE FIGUEIREDO⁵

RESUMO: O objetivo desse trabalho foi avaliar o teor e acúmulo de Ca, Mg e S do rizoma e raiz de plantas de Strelitzia augusta cultivadas em solução nutritiva, sob deficiência de macronutrientes. O experimento foi realizado em casa de vegetação do DCS/UFLA, Lavras-MG. O esquema estatístico utilizado foi o DIC com três repetições, contendo sete tratamentos, baseados na solução de Hoagland & Arnon. Os tratamentos foram: solução nutritiva completa (controle) e soluções nutritivas com omissões individuais de N, P, K, Ca, Mg e S. Após a germinação, as mudas foram transferidas para a solução nutritiva completa com 10% da sua força iônica (período de adaptação), as quais permaneceram com aeração constante. As plantas foram selecionadas quanto à uniformidade de tamanho e transferidas para vasos de plástico (5L) com solução nutritiva a 100%, no qual foram aplicados os tratamentos. As plantas foram colhidas após 180 dias, sendo, posteriormente, coletada a matéria seca e realizada a análise química do rizoma e raízes das plantas. As deficiências individuais de macronutrientes causam alterações nos teores e nos acúmulos de Cu, Fe e Mn no rizoma e na raiz de Strelitzia augusta. Os teores de Cu, Fe e Mn encontrados no rizoma de Strelitzia augusta no tratamento completo são 4,04; 236,49 e 81,33 mg.kg⁻¹, respectivamente. Os teores de Cu, Fe e Mn encontrados na raiz de *Strelitzia augusta* no tratamento completo são 8,81; 4210,38 e 130,65 mg.kg⁻¹, respectivamente.

Palavras-chave: Strelitzia augusta, omissão de macronutrientes, plantas ornamentais.

INTRODUÇÃO

O Brasil se consolida no cenário mundial da floricultura, tanto na produção de espécies temperadas quanto na de tropicais. Nos últimos anos, a floricultura tropical tem despontado como uma das atividades agrícolas sustentáveis mais promissoras da agricultura tropical. E é no desenvolvimento da floricultura tropical que o país mostra suas mais promissoras possibilidades ecológicas, produtivas e comerciais (TERAO et al., 2005).

Em Minas Gerais o mercado de produção e de comercialização de flores é promissor, tanto de clima temperado quanto de clima tropical, devido à sua diversidade climática. A produção está distribuída em todas as regiões do estado, porém, para as flores tropicais, duas se destacam, a região Norte e a Zona da Mata (LUZ et al., 2010). As principais espécies tropicais cultivadas são: helicônias, alpínias, abacaxis ornamentais, estrelícias, bastões-do-imperador e gengibres ornamentais, entre outras.

A *Strelitzia augusta* Thumb., também conhecida como ave-do-paraíso-branca, pertence à ordem Zingiberales, anteriormente inclusa na família Musaceae, hoje pertence à família Strelitziaceae. É uma árvore semi-lenhosa, ereta, forma touceiras, com quatro a sete metros de altura, de folhagem decorativa, grandes, coriáceas e recurvadas. Tem origem na África do Sul e suas inflorescências são

⁴ Graduanda do oitavo período de Agronomia, DCS/UFLA, liviacoelho_6@hotmail.com

¹ Mestranda em Ciência do Solo, DCS/ UFLA, vivianeatc@yahoo.com.br

² Doutorando em Ciência do Solo, DCS/UFLA, cleberrodas@yahoo.com.br

³ Professora Titular, DCS/UFLA, janicegc@ufla.br

⁵ Graduanda do oitavo período de Agronomia, DCS/UFLA, marislaine_alves@yahoo.com.br

27 de setembro a 01 de outubro de 2010

grandes, com espatas em forma de barco e flores brancas que se abrem sucessivamente (LORENZI & MELO FILHO, 2001; LAMAS, 2002).

Vários fatores estão envolvidos na qualidade dos produtos da floricultura, destacando-se entre eles, a adubação e a nutrição das plantas (FURLANI & CASTRO, 2001).

O objetivo desse trabalho foi avaliar o teor e acúmulo de Cu, Fe e Mn do rizoma e raiz de plantas de *Strelitzia augusta*, em solução nutritiva, sob deficiência de macronutrientes.

MATERIAL E MÉTODOS

O experimento foi realizado em casa de vegetação do Departamento de Ciência do Solo, na Universidade Federal de Lavras, Lavras-MG.

As plantas de *Strelitzia augusta* utilizadas no experimento foram propagadas via sementes e germinadas em bandeja de poliestireno expandido com vermiculita. Após a germinação, as mudas foram transferidas para a solução nutritiva completa de Hoagland & Arnon (1950), com 10% da sua força iônica (período de adaptação), as quais permaneceram com aeração constante.

Após o período de adaptação, as plantas foram transferidas para vasos com capacidade para cinco litros, onde foram aplicados os tratamentos, sob a técnica do elemento faltante.

O delineamento experimental utilizado foi o DIC com três repetições e sete tratamentos, representados por solução nutritiva completa (controle) e soluções nutritivas com omissões individuais de N, P, K, Ca, Mg e S. Cada parcela foi constituída por uma planta por vaso. As trocas de soluções nutritivas foram realizadas quinzenalmente e durante o intervalo de renovação das soluções o volume dos vasos foi completado, sempre que necessário, utilizando-se água deionizada.

Após os 180 dias de experimentação, as plantas foram colhidas, separadas em parte aérea, rizoma e raiz e as mesmas foram lavadas em água corrente e em seguida em água destilada, sendo, posteriormente, levada para estufa de circulação forçada de ar, à temperatura de 65°-70°C, até que apresentasse peso constante. Após a secagem, o material vegetal foi pesado em balança de precisão para a determinação da matéria seca. Procedeu-se, então, a moagem para posterior análise química, determinando-se os teores de Cu, Fe e Mn seguindo os métodos descritos por Malavolta et al. (1997).

Os dados obtidos foram submetidos à análise de variância e as médias avaliadas pelo teste Scott & Knott, a 5% de probabilidade. As análises estatísticas foram realizadas com o programa computacional Sisvar (FERREIRA, 2003).

RESULTADOS E DISCUSSÃO

Os teores e acúmulos de Cu, Fe e Mn do rizoma de *Strelitzia augusta*, diferiram significativamente em função dos tratamentos estudados e encontram-se na tabela 1.

TABELA 1: Produção de matéria seca (MS), teor (T) e acúmulo (AC) de cobre (Cu), ferro (Fe) e manganês (Mn) pelo rizoma de plantas de *Strelitzia augusta* sob omissão de macronutrientes. UFLA, Lavras, MG, 2009.

Tratamento	MS (g) -	T (Cu)	AC (Cu)	T (Fe)	AC (Fe)	T (Mn)	AC (Mn)
		mg kg ⁻¹	μg planta ⁻¹	mg kg ⁻¹	μg planta ⁻¹	mg kg ⁻¹	μg planta ⁻¹
Completo	8,50	4,04a	34,53a	236,49a	2014,38b	81,33e	697,78c
-N	1,91	0,81c	1,54d	265,94a	516,04c	746,77a	1434,89b
-P	10,02	1,48c	14,78c	277,54a	2771,68a	478,87b	4804,04a
-K	5,28	3,24a	17,18c	263,26a	1390,36b	172,16c	908,17c
-Ca	4,94	4,55a	22,60b	126,72b	669,07c	127,77d	627,02c
-Mg	5,53	2,41b	13,14c	290,03a	1610,57b	38,12e	212,19d
-S	7,24	3,73a	27,00b	240,95a	1751,60b	109,80d	795,48c
CV (%)		15,20	19,38	23,80	28,38	11,26	19,08

Médias seguidas de mesma letra na coluna não diferem entre si, pelo teste Scott & Knott a 5% de probabilidade.

27 de setembro a 01 de outubro de 2010

Para os teores de Cu do rizoma, os maiores valores foram encontrados nas plantas dos tratamentos –Ca, completo, -S e -K. Esse fato pode ser explicado pelo efeito de concentração do Cu e ausência do mecanismo de inibição competitiva entre Cu x Ca e Cu x K (MALAVOLTA, 2006). Já os menores teores de Cu foram observados nas plantas dos tratamentos –P e –N, devido, provavelmente. Esses dados corroboram com os encontrados por Pinho (2007), estudando plantas de banana ornamental. Todos os tratamentos apresentaram queda nos acúmulos de Cu no rizoma das plantas em relação à testemunha.

Dentre os tratamentos estudados, somente na omissão de Ca houve queda nos teores de Fe nos rizomas das plantas. Na omissão de P houve o maior acúmulo de Fe devido à grande produção de matéria seca do rizoma e ao alto teor do elemento nessa parte da planta.

Para o teor de Mn do rizoma, os maiores valores foram observados nas plantas com omissão de N, refletindo efeito de concentração desse nutriente devido à baixa produção de matéria seca nessas plantas. Resultados semelhantes foram observados por Frazão (2008), trabalhando com plantas de bastão-do-imperador.

Os maiores acúmulos de Mn no rizoma foram verificados nas plantas dos tratamentos sob omissões de P, devido, provavelmente, à maior produção de matéria seca.

Os teores e acúmulos de Cu, Fe e Mn da raiz de *Strelitzia augusta*, diferiram significativamente, em função dos tratamentos estudados e encontram-se na tabela 1.

TABELA 2: Produção de matéria seca (MS), teor (T) e acúmulo (AC) de cobre (Cu), ferro (Fe) e manganês (Mn) pela raiz de plantas de *Strelitzia augusta* sob omissão de macronutrientes. UFLA, Lavras, MG, 2009.

Tratamento	MS (g) -	T (Cu)	AC (Cu)	T (Fe)	AC (Fe)	T (Mn)	AC (Mn)
		mg kg ⁻¹	μg planta ⁻¹	mg kg ⁻¹	μg planta ⁻¹	mg kg ⁻¹	μg planta ⁻¹
Completo	6,30	8,81c	55,10c	4210,38c	26538,85b	130,65c	822,30c
-N	6,00	3,42d	21,11d	1091,42d	6557,73d	364,99b	2048,92b
-P	7,37	23,84a	151,16a	5355,34b	33931,76a	527,45a	3355,66a
-K	3,35	9,65c	32,19d	6597,68a	22098,01b	75,19c	242,47c
-Ca	4,11	10,42c	42,80d	3259,52c	13391,19c	118,27c	486,99c
-Mg	3,87	8,07c	31,66d	4358,52c	16529,18c	151,99c	588,81c
-S	6,37	13,41b	83,84b	3974,78c	25071,17b	108,28c	678,98c
CV (%)		8,72	12,56	15,24	20,91	25,79	22,42

Médias seguidas de mesma letra na coluna não diferem entre si, pelo teste Scott & Knott a 5% de probabilidade.

Os maiores teores de Cu da raiz foram encontrados nas plantas sob omissão de P. A literatura cita que esses elementos apresentam certo antagonismo, haja vista que no excesso de um, a planta apresenta deficiência do outro. Esses dados corroboram com Pinho (2007) e com Almeida (2007). Já o menor teor foi observado nas plantas sob omissão de N.

Em relação ao acúmulo de Cu da raiz, os maiores valores foram observados nas plantas do tratamento –P, devido, possivelmente, à maior produção de matéria seca.

Houve aumento no teor de Fe das raízes quando se omitiu K da solução de cultivo, reflexo da baixa produção de matéria seca de raízes dessas plantas e pela ausência do mecanismo de inibição competitiva Fe x K (MALAVOLTA et al., 1997).

Foram observados os maiores acúmulos de Fe na raiz em plantas sob omissão de P, devido à maior produção de matéria seca. Entre as partes das plantas, a raiz foi o órgão que apresentou os maiores teores e acúmulos de Fe, indicando sua menor mobilidade dentro da planta. Segundo Bergmann (1992), o Fe não é facilmente transportado nos tecidos.

Os maiores teores e acúmulos de Mn da raiz foram encontrados nas plantas cultivadas sob omissões de P, com valores muito superiores ao completo.

27 de setembro a 01 de outubro de 2010

CONCLUSÕES

As deficiências individuais de macronutrientes causam alterações nos teores e nos acúmulos de Cu, Fe e Mn no rizoma e na raiz de *Strelitzia augusta*.

Os teores de Cu, Fe e Mn encontrados no rizoma de *Strelitzia augusta* no tratamento completo são 4,04; 236,49 e 81,33 mg.kg⁻¹, respectivamente.

Os teores de Cu, Fe e Mn encontrados na raiz de *Strelitzia augusta* no tratamento completo são 8,81; 4210,38 e 130,65 mg.kg⁻¹, respectivamente.

REFERÊNCIAL BIBLIOGRÁFICO

ALMEIDA, E. F.A. Nutrição mineral em plantas de copo-de-leite: deficiência de nutrientes e adubação silicatada. 2007. 109p. Tese (Doutorado em Fitotecnia) — Universidade Federal de Lavras, Lavras-MG.

FERREIRA, D. F. SISVAR software: versão 4.6. Lavras: DEX/UFLA, 2003. Software

FRAZÃO, J. E. M. Diagnose da deficiência nutricional e crescimento do Bastão-do-Imperador *Etlingera elatior* (Jack) R. M. Smith com o uso da técnica do elemento faltante em solução nutritiva, 2008. 67p. Tese (Doutorado em Ciência do Solo) – Universidade Federal de Lavras, Lavras-MG.

FURLANI, A. M. C.; CASTRO, C. E. F. Plantas ornamentais e flores. **In:** FERREIRA, M. E. CRUZ, M. C. P.; RAIJ, B.; ABREU, C. A. Micronutrientes e elementos tóxicos na agricultura. Jaboticabal: CNPq/ FAPESP/ POTAFOS, 2001. p.533-552.

HOAGLAND, D. R.; ARNON, D. L. **The water culture methods for growing plants without soil**. Berkeley, California Agriculture Experiment Station, 1950. 32p. (Bulletin, 347).

LAMAS, A. M. Floricultura tropical: técnicas de cultivo. Recife: SEBRAE/PE, 2002, 88p.

LORENZI, H.; MELO FILHO, L. E. **As plantas tropicais de R. Burble Marx**. São Paulo: Instituto Plantarum de Estudos da Flora, 2001. 488p.

LUZ, P. B.; ALMEIDA, E. F. A.; PAIVA, P. D. O.; RIBEIRO, T. R. **Cultivo de flores tropicais**. Disponível em: http://www.artigocientifico.com.br/uploads/artc_1166065542_47.pdf. Acesso: 06 de agosto de 2010.

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Potafos, 1997. 319 p.

MALAVOLTA, E. Manual de nutrição mineral de plantas. São Paulo: Ceres, 2006. 638p.

MARSCHNER, H. Mineral nutrition of higher plants. NY; Academic Press, 1995. 889p.

PINHO, P. J. de. **Deficiências nutricionais em bananeira ornamental** (*Musa velutina* h. wendl. & drude): Alterações químicas e morfológicas e caracterização de sintomas visuais. 2007. 147p. Tese (Doutorado em solos e Nutrição de Plantas) — Universidade Federal de Lavras, Lavras-MG.

TERAO, D.; CARVALHO, A. C. P. P. de; BARROSO, T. C. S. **Flores tropicais**. Brasília: Embrapa informação tecnológica, 2005. 225p.