XIX CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 27 de setembro a 01 de outubro de 2010

LEVANTAMENTO DE FORMIGAS (HYMENOPTERA) EM AMBIENTES SILVIPASTORIL

Alexander Machado Auad¹, Tiago Teixeira de Resende², Valquíria Silva Machado³, Dayane Ribeiro dos Santos⁴, Priscila Henriques Monteiro⁴, Ítalo Salvatore de C. P. Maddalena⁴

RESUMO

As formigas são bioindicadoras, e o monitoramento dessas possibilita caracterizar determinados habitats. Dessa forma, objetivou-se realizar o levantamento de formigas em ambiente de pastagens associado a árvores (sistema silvipastoril). Para tal instalou-se uma armadilha do tipo "Malaise", em pastagem de *Brachiaria decumbens*, e os insetos foram amostrados mensalmente no período de agosto de 2006 a junho de 2009. Esses foram levados ao laboratório e triados, sendo aqueles representantes da família Formicidae identificados na categoria de gênero, contabilizados, fixados e mantidos em caixas entomológicas. Foram amostrados 6.545 espécimes de formigas, correspondendo a 82% dos hymenopteros presentes na área experimental, denotando ser o grupo predominante no sistema silvipastoril analisado. Identificou-se 80% dos espécimes, e esses pertenceram aos gêneros: Camponotus, Pseudomyrmex, Iridomyrmex, Hylomyrma, Cephalotes, Cardiocondyla, Acromyrmex, Paratrechina, Mycetarotes e Brachymyrmex. Os três primeiros gêneros corresponderam a 63% dos espécimes coletados; sendo a maior diversidade de espécimes atribuídos aos gêneros Camponotus e Pseudomyrmex. Constatou-se que indivíduos pertencentes à subfamília Myrmicinae, que corresponde à fauna desfolhadora, representou 10% daqueles amostrados, caracterizando a predominância de formigas benéficas no sistema.

Palavras-chave: Forrageira, Brachiaria decumbens, formicidae

INTRODUÇÃO

A implantação do sistema silvipatoril permite o aumento da capacidade de suporte das pastagens, a conservação do solo e da água, e a oferta de produtos madeiráveis (CASTRO et al. 2007). Por ser constituído de mais de uma espécie vegetal, favorece a riqueza da entomofauna local, ajudando a manter o equilíbrio ecológico na área; visto que, a diversidade faunística está estreitamente relacionada à flora.

Algumas espécies de formigas são classificadas como pragas potenciais; entretanto, podem ser também responsáveis pela melhoria da fertilidade e qualidade do solo (QUEIROZ et. al. 2006). Nas regiões tropicais as formigas se destacam, pois apresentam uma gama de espécies e variadas funções ecológicas nos ecossistemas, apresentando vasta distribuição geográfica (HÖLLDOBLER & WILSON, 1990). Suas características variam de hábitos detritívoros ao cultivo de fungo. Podem ser também predadoras, se alimentarem de produtos vegetais, como néctar, ou causarem desfolhas às plantas (SCHULTZ & MCGLYNN, 2000).

Levantamentos de espécies de insetos subsidiam informações sobre as propriedades biológicas, a presença de espécies raras e ecologicamente importantes, e a distribuição zoogeográfica desses (ALONSO & AGOSTI, 2000), que consequentemente auxiliará nas estratégias de manejo e conservação dessas áreas.

Apesar de sua importância, estudos relacionados ao levantamento de formigas em sistema silvipastoril ainda são incipientes. Sendo assim, o objetivo dessa pesquisa foi realizar o levantamento populacional de formigas em *Brachiária decumbens* sob sistema silvipastoril.

¹ Pesquisador da Embrapa Gado de Leite, amauad@cnpgl.embrapa.br

² Assistente do Laboratório de Entomologia da Embrapa Gado de Leite

³ Mestre da Universidade Federal de Juiz de Fora

⁴ Graduando do Curso de Biologia da Universidade Federal de Juiz de Fora

XIX CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 27 de setembro a 01 de outubro de 2010

MATERIAL E MÉTODOS

A pesquisa foi conduzida no campo experimental da Embrapa Gado de Leite em Coronel Pacheco – MG, em uma área de *B.decumbens* manejada sob espécies arbóreas compostas por *Eucalyptus grandis, Acacia mangium, A. angustíssima* e *Mimosa artemisiana*, cultivadas de forma intercalada, sendo as faixas de árvores espaçadas a 30 metros.

Nesse sistema foi instalada uma armadilha do tipo "Malaise", e os insetos foram amostrados de agosto de 2006 a Junho de 2009, sendo que o pote coletor era substituído quinzenalmente. Esses, contendo os insetos capturados, foram levados ao laboratório de Entomologia da Embrapa gado de leite e mantidos em álcool 70%. As formigas triadas foram contabilizadas e identificadas até o nível de gênero, fixadas e mantidas em caixas entomológicas.

Para a avaliação da diversidade foi utilizado o índice de Shannon-Wiener (H') proposto pelo programa Past. Para análise dos índices de constância foi utilizada a metodologia de Bodenheimer (1955) citado por Silveira Neto (1976), por meio da fórmula: C=p x 100/N, sendo (p) o número de coletas contendo a espécie estudada, (N) o número total de coletas efetuadas. Dessa forma foram classificadas como constantes, acessórias ou acidentais se presentes em mais de 50%, entre 25 e 50% ou em menos de 25% das coletas, respectivamente.

Realizou-se a análise de correlação de Sperman para conhecer a influência entre a ocorrência total de formigas e os fatores climáticos (médias da temperatura e da umidade e precipitação total) dos intervalos anteriores as datas das coletas.

RESULTADOS E DISCUSSÃO

Nos 35 meses de levantamento foram amostrados 6.545 espécimes pertencentes à família Formicidae, correspondendo a 82% dos Hymenopteros amostrados na área experimental, denotando ser o grupo predominante dessa ordem, no sistema silvipastoril (Tabela 1). Alonso e Agosti (2000) consideram essa família como uma das mais importantes e abundantes em vários ecossistemas terrestres, justificando a representatividade dessa no ambiente analisado.

Constatou-se grande amplitude de espécimes da família formicidae, em diferentes épocas no sistema silvipastoril, sendo o maior (822) e o menor (3) número de espécimes registrados em novembro e fevereiro de 2007, respectivamente (Tabela 1). Esse fato contribuiu para que não houvesse uma correlação significativa do número de indivíduos amostrados nos mesmos meses dos diferentes anos em que a pesquisa foi conduzida.

Identificou-se 80% dos espécimes, e esses pertenceram aos gêneros: Camponotus, Pseudomyrmex, Iridomyrmex, Hylomyrma, Cephalotes, Cardiocondyla, Acromyrmex, Paratrechina, Mycetarotes e Brachymyrmex. Os três primeiros gêneros corresponderam a 63% dos espécimes coletados (Tabela 1); sendo a maior diversidade de espécimes atribuída aos gêneros Pseudomyrmex (H=2,68) e Camponotus (H=2,17). Constatou-se que indivíduos pertencentes à subfamília Myrmicinae, que corresponde à fauna desfolhadora, representou 10% daqueles amostrados, caracterizando a predominância de formigas benéficas no sistema; que segundo Queiroz et. al. (2006) são importantes para a conservação da biodiversidade e úteis como indicadores biológicos.

A grande variedade de espécimes do gênero Camponotus é atribuída à grande freqüência desse gênero em vários habitats (JAFFÉ et al., 1993). O fato de 50% da fauna de formiga estar associado aos restos vegetais em processo de decomposição (DELABIE & FOWLER, 1995), explica a maior diversidade desse grupo no ambiente analisado; em que existe um o grande volume de serrapilheira.

Quanto à constância, os gêneros Camponotus, Cephalotes, Paratrechina, Pseudomyrmex e Iridomyrmex apresentaram-se constantes nas coletas. Já Acromyrmex, Mycetarotes e Hylomyrma foram classificados como acessórios e os demais gêneros apresentaram-se como acidentais.

XIX CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 27 de setembro a 01 de outubro de 2010

Tabela 1 – Número mensal e total de espécimes, e índice de constância de formigas amostradas em pastagem de *B. decumbens* sob sistema silvipastoril. Coronel Pacheco, agosto de 2006 a junho de 2009.

-		Gênero											
Ano	Mês	Pseudomyrmex	Camponotus	Iridomyrmex	Paratrechina	Hylomyrma	Cardiocondyla	Cephalotes	Brachymirmex	Acromyrmex	Mycetarotes	Não identificados	Total por mês
2006	Agosto Setembro Outubro Novembro Dezembro	4 0 4 0 9	28 19 6 20 1	9 0 4 8 1	0 0 2 0 0	2 232 23 0 0	113 0 99 0	27 0 4 0 0	0 0 0 0	1 1 1 0 0	9 0 2 0 0	30 3 52 12 3	223 255 197 40 14
2007	Janeiro Fevereiro Março Abril Maio Junho Julho Agosto Setembro Outubro Novembro Dezembro	22 3 10 10 90 84 40 98 171 81 173 19	36 0 7 5 39 61 13 27 77 82 120 18	16 0 0 1 28 7 11 24 23 71 95 16	1 0 2 3 16 0 2 8 34 56 29 2	0 0 0 0 3 0 2 1 0 0 6	0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 2 2 2 2 1 4 5	0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 0 1 2 0 0 0	33 0 0 1 15 15 17 10 19 46 393 86	110 3 19 20 195 169 88 172 326 341 822 141
2008	Janeiro Fevereiro Março Abril Maio Junho Julho Agosto Setembro Outubro Novembro Dezembro	23 92 104 37 23 31 49 7 7 45 28 0	3 96 119 118 27 13 6 22 17 7 5	3 23 169 14 15 69 33 16 20 53 43 5	3 27 25 20 18 10 12 5 2 26 9 5	0 4 4 0 2 4 5 2 0 2 0 2	0 0 0 0 0 0 0 0 0 0	0 5 1 4 1 0 1 0 0 2 2 0	0 47 0 0 0 0 0 0 0 0 0	0 2 4 0 6 0 0 0 2 0 0	0 1 0 0 0 0 1 0 0 0 0	54 44 27 13 24 14 50 4 80 126 67 2	86 341 453 206 116 141 157 56 128 261 154 22
2009	Janeiro Fevereiro Março Abril Maio Junho	3 85 94 24 20 24	10 0 1 0 137 221	0 250 131 94 3 19	0 11 22 4 2 9	6 0 0 0 0 2	0 0 0 0 0	1 9 16 0 3 1	0 0 0 0 0 0	3 0 2 4 6 9	0 0 0 0 0	17 12 11 0 15 8	40 367 277 126 186 293
Total de espécimes Porcentagem de espécimes Constância¹		1514 23,1 W	1370 20,9 <i>W</i>	1274 19,5 W	365 5,6 W	300 4,6 <i>Y</i>	213 3,3 Z	95 1,5 <i>W</i>	48 0,7 Z	45 0,7 <i>Y</i>	18 0,3 <i>Y</i>	1303 19,9	6545 100

¹Constância= W: constante, Y: acessória, Z: acidental.

XIX CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 27 de setembro a 01 de outubro de 2010

CONCLUSÕES

Houve predominância dos gêneros Camponotus, Pseudomyrmex e Iridomyrmex.

As características do sistema silvipastoril, microclima promovido pelas árvores incluídas no sistema e a serrapilheira como local de nidificação, promoveram elevada densidade populacional e diversidade de formigas.

REFERÊNCIAS BIBLIOGRÁFICAS

ALONSO, L. E.; AGOSTI, D. Biodiversity studies, monitoring, and ants: an overview. In: Agosti, D.; Majer, J. D.; Alonso, L. E.; Schultz, T. R. **Ants: Standard methods for measuring and monitoring biodiversity**. 2000. p. 1-8.

CASTRO, C. R. T.; PACIULLO, D. S. C.; PIRES, M. F. A. . Implantação de sistemas silvipastoris como estratégia para alcançar a sustentabilidade da produção pecuária. In: MOREIRA, M.S.P.; DINIZ, F.H.; SOUZA, A.D.; CASTRO, C.R.T. **Alternativas sustentáveis para produção de leite no Estado de Minas Gerais**. 1ª ed. Juiz de Fora - MG: Embrapa Gado de Leite, 2007, p. 65-86.

DELABIE, J. H. C.; FOWLER, H. G. Soil and serapilheira cryptic ant assemblages of Bahian of cocoa plantations. **Pedobiologia**, v.39, p.423-433, 1995.

HÖLLDOBLER, B.; WILSON, E. O. The ants. Harvard University Press, Cambridge. 1990. 732p.

JAFFÉ, K. C.; PÉREZ, E.; LATTKE, J. El mundo de lãs hormigas. Baruta: Equinoccio, 1993. 183p.

QUEIROZ, J. M.; ALMEIDA, F. A.; PEREIRA, M. P. S. Conservação da biodiversidade e o papel das formigas (Hymenoptera: Formicidae) em agroecossistemas. **Floresta e Ambiente,** v. 13, p. 2006. p.37-45.

SCHULTZ, T. R.; MCGLYNN, T. P. The interactions of ants with other organisms. In: AGOSTI, D.; MAJER, J. D.; ALONSO, L. E.; SCHULTZ, T. R. **Ants: standard methods for measuring and monitoring biodiversity**. Washington, Smithsonian Institution. 2000. p.35-44.

SILVEIRA-NETO, S.; NAKANO, O.; BARBIN, D.; VILLA NOVA, N.A. **Manual de Ecologia dos Insetos**, São Paulo: Agronômica Ceres Ltda, 1976, 419p.